吉林大学学报(工学版) ›› 2023, Vol. 53 ›› Issue (1): 255-262.doi: 10.13229/j.cnki.jdxbgxb20210542
• 通信与控制工程 • 上一篇
Zhou-zhou LIU1(),Chuan-xin SUN2,Xiao-zhu WANG3,Yang-mei ZHANG4
摘要:
针对当前单一传感器受其成像性能的影响,通常很难全面反映地物场景下的全部有效信息,从而产生场景信息难以准确识别的问题,提出了一种采用VGG19与低通滤波的红外与微光图像融合算法。首先,通过红外与微光探测器得到地物场景信息,采用三维分布、直方图对比以及取反方式对图像进行处理,同时分析红外与微光图像目标特性,研究双频图像的光谱机理;其次,在此基础上,利用低通滤波方式分解红外与微光图像,得到其轮廓信息与显著信息,轮廓部分采用平均加权策略进行融合,显著部分采用VGG策略进行多层融合,进而融合重构图像;最后,与其他算法结果进行对比,并利用性能评估方法评价各融合算法。实验结果表明,该算法能够增强图像中场景信息的灰度,可以很好地提高场景亮度,解决了单频图像中场景信息抗背景干扰的问题。
中图分类号:
1 | Sharma A M, Dogra A, Goyal B, et al. Low-light visible and infrared image fusion in NSST domain[C]//Proceedings of International Conference on IoT Inclusive Life, Singapore, 2020: 61-68. |
2 | 黄煜东. 真实场景的红外与微光图像融合方法研究[D].长沙: 国防科技大学智能科学学院,2018. |
Huang Yi-dong. Fusion of infrared and low-level light images in realistic scene[D]. Changsha: College of Intelligent Sciences, National University of Defense Technology, 2003. | |
3 | Zhang Z, Li H, Zhao G. Bionic algorithm for color fusion of infrared and low light level image based on rattlesnake bimodal cells[J]. IEEE Access, 2018, 6: 68981-68988. |
4 | Wang X, Yin J, Zhang K, et al. Infrared weak-small targets fusion based on latent low-rank representation and DWT[J]. IEEE Access, 2019, 7:112681-112692. |
5 | 胡清平, 张晓晖, 刘超. 基于噪声评价的微光红外图像自适应融合方法[J]. 海军工程大学学报, 2017, 29(1): 102-106. |
Hu Qing-ping, Zhang Xiao-hui, Liu Chao. Adaptive fusion method of low light level and infrared image based on noise analysis[J]. Journal of Naval University of Engineering, 2017, 29(1): 102-106. | |
6 | Vijayarajan R, Nagarajan S, Karthik R, et al. Performance analysis of VGG19 deep learning network based Brain image fusion[M]//Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments, Hershey(USA): IGI Global, 2020: 145-166. |
7 | Yang L, Gomez-Garcia R, Munoz-Ferrer J M, et al. Input-reflectionless low-pass filter on multilayered diplexer-based topology[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(10): 945-948. |
8 | Li H, Wu X J. Infrared and visible image fusion using a novel deep decomposition method [DB/OL].[2018-11-01]. . |
9 | Chen W B, Hu M, Zhou L, et al. Fusion algorithm of multi-focus images with weighted ratios and weighted gradient based on wavelet transform[J]. Journal of Intelligent Systems, 2019, 28(4): 505-516. |
10 | Nikbakhsh N, BaleghI Y, Agahi H. Maximum mutual information and Tsallis entropy for unsupervised segmentation of tree leaves in natural scenes[J]. Computers and Electronics in Agriculture, 2019, 162:440-449. |
11 | Yu B, Qiao T, Zhang H, et al. Dual band infrared detection method based on mid-infrared and long infrared vision forconveyor belts longitudinal tear[J]. Measurement, 2018, 120: 140-149. |
12 | Wang E, Yang B, Pang L. Super pixel-based structural similarity metric for image fusion quality evaluation[J]. Sensing and Imaging, 2021, 22(16): 1-25. |
13 | Nandal A, Rosales H G, et al. Modified PCA transformation with LWT for high-resolution based image fusion[J]. Iranian Journal of Science and Technology. 2019: S141-S157. |
14 | Sriwathi Nimmagadda, Nimmagadda Shastri L, Neel Mani. Design and development of a real time vision enhancement system using image fusion[J]. Procedia Computer Science, 2019, 159: 990-1000. |
15 | Liu Z, Y S, Sheng V S, et al. MRI and PET image fusion using the nonparametric density model and the theory of variable-weight[J]. Computer Methods & Programs in Biomedicine, 2019, 175: 73-82. |
16 | Yang Z, Chen Y, Le Z, et al. GAN fuse: a novel multi-exposure image fusion method based on generative adversarial networks[J]. Neural Computing and Applications, 2020,33: 6133-6145. |
17 | Li H, Wu X J, Durrani T S. Infrared and visible image fusion with resnet and zero-phase component analysis[J]. Infrared Physics & Technology, 2019, 102:No.103039. |
[1] | 刘玉梅,乔宁国,庄娇娇,刘鹏程,胡婷,陈立军. 基于多传感器数据融合的轨道车辆齿轮箱异常检测[J]. 吉林大学学报(工学版), 2019, 49(5): 1465-1470. |
[2] | 吴一全, 吴诗婳, 张宇飞. 基于混沌粒子群优化的Contourlet域红外图像自适应增强[J]. 吉林大学学报(工学版), 2014, 44(5): 1466-1473. |
[3] | 丁莹, 李文辉, 范静涛, 杨华民. 基于模糊积分特征的红外图像运动目标检测算法[J]. 吉林大学学报(工学版), 2010, 40(05): 1330-1335. |
[4] | 杨兆升, 杨庆芳, 冯金巧. 路段平均速度组合融合算法及其应用[J]. 吉林大学学报(工学版), 2004, (4): 675-678. |
|