吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 1466-1473.doi: 10.7964/jdxbgxb201405039

• • 上一篇    下一篇

基于混沌粒子群优化的Contourlet域红外图像自适应增强

吴一全1, 2, 吴诗婳1, 张宇飞1   

  1. 1.南京航空航天大学 电子信息工程学院, 南京 210016;
    2.中航工业电光设备研究所 光电控制技术重点实验室, 河南 洛阳 471009
  • 收稿日期:2013-03-07 出版日期:2014-09-01 发布日期:2014-09-01
  • 作者简介:吴一全(1963), 男, 教授, 博士生导师.研究方向:图像处理与分析, 目标检测与识别.E-mail:nuaaimage@163.com
  • 基金资助:
    国家自然科学基金项目(60872065); 光电控制技术重点实验室与航空科学基金联合项目(20105152026); 中航工业合作创新产学研项目(CXY2010NH15); 计算机软件新技术国家重点实验室(南京大学)开放基金项目(KFKT2010B17); 江苏高校优势学科建设工程项目.

Infrared image adaptive enhancement in Contourlet domain based on chaotic particle swarm optimization

WU Yi-quan1,2,WU Shi-hua1,ZHANG Yu-fei1   

  1. 1.College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2.Science and Technology on Electro-optic Control Laboratory, Institute of Electro-optical Equipnent of AVIC,Luoyang 471009, China
  • Received:2013-03-07 Online:2014-09-01 Published:2014-09-01

摘要: 为进一步增强红外图像的对比度、提高清晰度并抑制噪声,提出了一种基于混沌粒子群优化(PSO)的Contourlet域红外图像自适应增强方法。首先对红外图像进行Contourlet变换,调整低通图像和细节图像在原始图像中的比例,并经灰度线性拉伸增强图像对比度;然后通过非线性增益函数调整含噪带通方向子带系数;利用兼顾对比度、清晰度和信噪比3个指标的定量综合评价函数作为混沌PSO的适应度,寻找基于Contourlet的空间域增强和带通方向子带系数调整的非线性增益函数所涉及的最优参数。大量实验结果表明:与近年提出的4种图像增强方法相比,该方法能使红外图像的对比度和清晰度提高,噪声降低,整体视觉效果更佳。

关键词: 信息处理技术, 红外图像增强, Contourlet变换, 自适应增强, 混沌小生境粒子群优化, 非线性增益函数

Abstract: To further enhance the contrast of infrared image, improve the definition and suppress the noise, an adaptive enhancement method in Contourlet domain based on chaotic Particle Swarm Optimization (PSO) is proposed. First, Contourlet transform of the infrared image is performed. The proportion of low-pass image and detail image in the original image is adjusted, and the contrast is enhanced by linear gray stretch. Then, the coefficients of noisy bandpass directional subbands are adjusted by nonlinear gain function. An integrated quantitative evaluation function is used as the fitness of the chaotic PSO. In this evaluation function three indexes are taken into account, i.e. contrast, definition and signal-to-noise ratio. The optimal parameters, involved in the enhancement method in spatial domain and the nonlinear gain function for adjustment of coefficients of bandpass directional subbands base on Contourlet, are obtained by chaotic PSO algorithm. Experimental results for a large number of infrared images show that, compared with four existing image enhancement methods, the proposed method improves the contrast of enhanced infrared image, increases the definition, reduces the noise, and has a better overall visual effect.

Key words: information processing technology, infrared image enhancement, Contourlet transform, adaptive enhancement, niche chaotic mutation particle swarm optimization, nonlinear gain function

中图分类号: 

  • TN911.73
[1] Zhang Fei, Li Chen-fang, Shi Li-na. Detecting and tracking dim moving point target in IR image sequence[J]. Infrared Physics & Technology, 2005, 46(4): 323-328.
[2] Qidwal Uvais. Infrared image enhancement using H bounds for surveillance applications[J]. IEEE Transactions on Image Processing, 2008, 17(8): 1274-1282.
[3] 陈钱,柏连发,张保民. 红外图像直方图双向均衡技术研究[J]. 红外与毫米波学报, 2003, 22 (6): 428-430.Chen Qian,Bai Lian-fa,Zhang Bao-min. Histogram double equalization in infrared image[J]. Journal of Infrared and Millimeter Waves, 2003, 22 (6): 428-430.
[4] Andrea P, Giovanna R V, John M. Image enhancement via adaptive unsharp masking[J]. IEEE Transactions on Image Processing, 2000, 9(3): 505-510.
[5] 张长江,付梦印,金梅,等. 一种红外图像对比度增强的小波变换法[J]. 红外与毫米波学报, 2004, 23(2): 119-124.Zhang Chang-jiang, Fu Meng-yin, Jin Mei,et al. Approach to enhancement contrast of infrared image based on wavelet transform[J]. Journal of Infrared and Millimeter Waves, 2004, 23(2): 119-124.
[6] Demerial H,Ozcinar C,Anbarjafari G. Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 333-337.
[7] 宫武鹏,王永仲. 一种基于小波变换的红外图像对比度增强技术[J]. 国防科技大学学报,2000,22(6): 117-119.Gong Wu-peng, Wang Yong-zhong. Contrast enhancement of infrared image via wavelet transform[J].Chinese Journal of National University of Defense Technology, 2000, 22 (6) :117-119.
[8] 秦翰林,周慧鑫,刘上乾,等. 基于二代小波变换的红外图像非线性增强算法[J]. 光学学报,2009,29(2): 353-356.Qin Han-lin, Zhou Hui-xin, Liu Shang-qian, et al. Nonlinear enhancement algorithm for infrared image based on second generation wavelet transform[J]. Acta Optica Sinica, 2009, 29(2): 353-356.
[9] 占必超,吴一全,纪守新. 基于平稳小波变换和Retinex的红外图像增强方法[J]. 光学学报, 2010, 30(10):2788-2794.Zhan Bi-chao, Wu Yi-quan, Ji Shou-xin. Infrared image enhancement method based on stationary wavelet transformation and retinex[J]. Acta Optica Sinica, 2010, 30(10): 2788-2794.
[10] Zhang Chang-jiang,Wang Xiao-dong,Zhang Hao-ran. Global and local contrast enhancement algorithm for image using wavelet neural network and stationary wavelet transform[J]. Chinese Optics Letters, 2005, 3(11):636-639.
[11] Stack Jeanluc, Mugtach Fionn, Candsetal Emmeual J. Gray and color image contrast enhancement by the curvelet transform[J]. IEEE Transactions on Image Processing, 2003, 12(6): 706-717.
[12] Do M N, Vetterli M. The contourlet transform: an efficient directional multi resolution image representation[J]. IEEE Transactions on Image Processing,2005, 14 (12) :2091-2106.
[13] 石丹, 李庆武, 倪雪, 等.基于Contourlet变换的红外图像非线性增强[J]. 光学学报, 2009, 29 (2): 342-347.Shi Dan, Li Qing-wu, Ni Xue, et al. Infrared image nonlinear enhancement algorithm based on contourlet transform[J]. Acta Optica Sinica, 2009, 29 (2): 342-347.
[14] 李骜,李一兵,刘丹丹,等. 基于非下采样轮廓波的多曝光工件图像Retinex增强方法[J]. 吉林大学学报:工学版, 2012,42(6): 1592-1596.Li Ao, Li Yi-bing, Liu Dan-dan, et al. Retinex enhancement method of multi-exposure workpiece images based on NSCT[J]. Journal of Jilin University (Engineering and Technology Edition), 2012, 42(6): 1592-1596.
[15] 张长江, 付梦印, 金梅. 基于模拟退火算法的红外图像自适应对比度增强[J]. 中国图象图形学报, 2004, 9(4): 291-295.Zhang Chang-jiang, Fu Meng-yin, Jin Mei. Adaptive contrast enhancement of infrared image based on simulated annealing algorithm[J]. Journal of Image and Graphics, 2004, 9(4): 291-295.
[16] Hashemi Sara, Kiani Soheila, Noroozi Navid. An image contrast enhancement method based on genetic algorithm[J]. Pattern Recognition Letters, 2010, 21(3): 1816-1824.
[17] 李林宜, 李德仁. 粒子群优化算法在遥感影像增强中的应用[J]. 测绘科学技术学报, 2010, 27(2): 116-119.Li Lin-yi, Li De-ren. Research on particle swarm optimization in remote sensing image enhancement[J].Journal of Geomatics Science and Technology,2010, 27(2): 116-119.
[18] 贾东立, 张家树.基于混沌变异的小生境粒子群算法[J]. 控制与决策, 2007, 22(1): 117-120.Jia Dong-li, Zhang Jia-shu. Niche particle swarm optimization combined with chaotic mutation[J]. Control and Decision, 2007, 22(1): 117-120.
[1] 苏寒松,代志涛,刘高华,张倩芳. 结合吸收Markov链和流行排序的显著性区域检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1887-1894.
[2] 徐岩,孙美双. 基于卷积神经网络的水下图像增强方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1895-1903.
[3] 黄勇,杨德运,乔赛,慕振国. 高分辨合成孔径雷达图像的耦合传统恒虚警目标检测[J]. 吉林大学学报(工学版), 2018, 48(6): 1904-1909.
[4] 李居朋,张祖成,李墨羽,缪德芳. 基于Kalman滤波的电容屏触控轨迹平滑算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1910-1916.
[5] 应欢,刘松华,唐博文,韩丽芳,周亮. 基于自适应释放策略的低开销确定性重放方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1917-1924.
[6] 陆智俊,钟超,吴敬玉. 星载合成孔径雷达图像小特征的准确分割方法[J]. 吉林大学学报(工学版), 2018, 48(6): 1925-1930.
[7] 刘仲民,王阳,李战明,胡文瑾. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1931-1937.
[8] 单泽彪,刘小松,史红伟,王春阳,石要武. 动态压缩感知波达方向跟踪算法[J]. 吉林大学学报(工学版), 2018, 48(6): 1938-1944.
[9] 刘哲, 徐涛, 宋余庆, 徐春艳. 基于NSCT变换和相似信息鲁棒主成分分析模型的图像融合技术[J]. 吉林大学学报(工学版), 2018, 48(5): 1614-1620.
[10] 姚海洋, 王海燕, 张之琛, 申晓红. 双Duffing振子逆向联合信号检测模型[J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[11] 全薇, 郝晓明, 孙雅东, 柏葆华, 王禹亭. 基于实际眼结构的个性化投影式头盔物镜研制[J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[12] 陈绵书, 苏越, 桑爱军, 李培鹏. 基于空间矢量模型的图像分类方法[J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[13] 陈涛, 崔岳寒, 郭立民. 适用于单快拍的多重信号分类改进算法[J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[14] 孟广伟, 李荣佳, 王欣, 周立明, 顾帅. 压电双材料界面裂纹的强度因子分析[J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[15] 林金花, 王延杰, 孙宏海. 改进的自适应特征细分方法及其对Catmull-Clark曲面的实时绘制[J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!