吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (8): 2348-2354.doi: 10.13229/j.cnki.jdxbgxb.20230307

• 计算机科学与技术 • 上一篇    下一篇

基于时序模型和深度学习的设备故障上限评估算法

朱广贺1(),朱智强2,袁逸萍3   

  1. 1.新疆师范大学 计算机科学技术学院,乌鲁木齐 830054
    2.新疆大学 软件工程学院,乌鲁木齐 830046
    3.新疆大学 机械工程学院,乌鲁木齐 830046
  • 收稿日期:2023-04-04 出版日期:2024-08-01 发布日期:2024-08-30
  • 作者简介:朱广贺(1984-),男,副教授,硕士.研究方向:大数据分析,人工智能.E-mail:zhuguanghe123@163.com
  • 基金资助:
    新疆维吾尔自治区科技重点研发专项项目(2020B02013)

Device fault ceiling evaluation algorithm based on timing model and deep learning

Guang-he ZHU1(),Zhi-qiang ZHU2,Yi-ping YUAN3   

  1. 1.College of Computer Science and Technology,Xinjiang Normal University,Urumqi 830054,China
    2.College of Software Engineering,Xinjiang University,Urumqi 830046,China
    3.College of Mechanical Engineering,Xinjiang University,Urumqi 830046,China
  • Received:2023-04-04 Online:2024-08-01 Published:2024-08-30

摘要:

为保障气体绝缘开关设备稳定运行,提出基于时序模型和深度学习的设备故障上限评估算法。该方法利用经验模态分解平稳化时间序列的不规则波动,结合长短期记忆网络构建联立算法;然后,通过该算法处理设备故障数据,提取敏感的本征模函数分量,进而完成故障特征的提取;最后,构建深度学习模型,并确定折射、反射系数,实现设备故障上限评估。测试结果表明:本文算法具有理想的故障上限评估结果,所得曲线与实际结果曲线之间具有较高的拟合度。由此可证明,本文算法可对设备故障上限进行科学评估,具有一定应用价值。

关键词: 时间序列模型, 故障上限评估, 不规则波动, 参数寻优, 经验模态分解

Abstract:

When a sudden malfunction occurs in gas insulated switchgear and is not dealt with in a timely manner, it not only leads to the stagnation of the production line, but also causes considerable economic losses to the enterprise. To avoid such situations, this study proposes a device fault upper limit evaluation algorithm based on time series models and deep learning. This algorithm combines the essence of modern data analysis, aiming to improve the accuracy and efficiency of fault detection. This method first applies empirical mode decomposition technology to handle the irregular fluctuation components in time series data. Through this method, the noise and redundant information in the fault signal are effectively removed, making the fault features clearer and easier to identify. Next, we introduced the long short-term memory network in deep learning algorithms. A simultaneous algorithm was constructed by combining LSTM network with EMD technology. This algorithm can simultaneously utilize the temporal and spatial characteristics of data to more accurately identify sensitive components in fault signals. After obtaining equipment fault data, empirical mode decomposition is performed using a simultaneous algorithm to obtain the intrinsic mode function components of the data signal. Then, extract the fault sensitive components from these components and analyze their relationship values and mutual information with the original data signal. Finally, in the process of evaluating the upper limit of equipment failure, a deep learning model is constructed and the refractive and reflection coefficients are determined to achieve accurate evaluation of the upper limit of equipment failure. Experimental tests have shown that the proposed algorithm has achieved ideal results in evaluating the upper limit of equipment failures. The obtained curve has a high degree of fit with the actual result curve, proving that the algorithm can scientifically evaluate the upper limit of equipment faults and has certain application value. This algorithm can not only be applied to the field of fault detection in gas insulated switchgear, but also be extended to other similar industrial equipment, contributing to the safety production and economic benefits of enterprises.

Key words: time series model, failure upper limit evaluation, irregular fluctuations, parameter optimization, empirical mode decomposition

中图分类号: 

  • TV632

图1

SEL模型联立流程图"

表1

GIS设备参数"

指标参数
额定电压/V220
额定功率/MW300
电压的模极值/V50
短时耐受电流/kA50
短路电流/kA31.5
覆冰厚度/mm20
耐地震烈度/度VII

图2

设备故障分解结果"

图3

分解序列上限评估结果"

图4

3种算法故障识别结果"

1 王硕禾, 巩方超, 古晓东, 等. 基于特征融合的变电设备类型及故障识别算法研究[J]. 铁道学报, 2021, 43(4):95-100.
Wang Shuo-he, Gong Fang-chao, Gu Xiao-dong, et al. Research on types of substation equipment and fault identification algorithm based on feature fusion [J]. Journal of Railway Studies, 2021,43(4): 95-100.
2 耿苏杰, 王秀利. 基于模糊贝叶斯网络的电力设备故障诊断和状态评估[J]. 计算机集成制造系统, 2021, 27(1): 63-71.
Geng Su-jie, Wang Xiu-li. Fault diagnosis and state estimation of power equipment based on fuzzy Bayesian network[J]. Computer Integrated Manufacturing System, 2021,27(1): 63-71.
3 梁天辰. 基于多深度置信网络融合的航空电子设备故障预测[J]. 电讯技术, 2021, 61(2): 248-253.
Liang Tian-chen. Fault prognostics of avionics equipment based on multi-deep belief network fusion[J]. Telecommunications Technology, 2021, 61(2): 248-253.
4 段翔兮, 高艺文, 孙永超, 等. 基于kNN算法的电力系统设备隐患在线识别方法研究[J]. 电气传动, 2021, 51(22): 69-73.
Duan Xiang-xi, Gao Yi-wen, Sun Yong-chao, et al. Research on on-line identification method of power system equipment based on kNN algorithm[J]. Electrical Transmission, 2021, 51(22): 69-73.
5 郭文军, 张自来, 陈丽君. EMD-AR和GRNN算法下的航空液压泵多模态故障诊断分析[J]. 液压与气动, 2022, 46(6): 151-158.
Guo Wen-jun, Zhang Zi-lai, Chen Li-jun. Multimodal fault diagnosis analysis of aviation hydraulic pump based on EMD-AR model and GRNN algorithm [J]. Hydraulic and Pneumatic, 2022, 46(6): 151-158.
6 张朝刚, 侍中楼, 李敏. 基于多状态时间序列预测学习的超精密机床主轴故障诊断仿真[J]. 吉林大学学报: 工学版, 2023, 53 (11): 3056-3061.
Zhang Chao-gang, Shi Zhong-lou, Li Min. Simulation of ultra-precision machine tool spindle fault diagnosis based on multi-state time series predictive learning[J]. Journal of Jilin University (Engineering and Technology Edition), 2023,53(11): 3056-3061.
7 柴榕敏, 崔明亮, 王友清, 等.基于多标签学习的旋转机械分级复合故障诊断[J]. 控制与决策, 2022, 37(7): 1772-1778.
Chai Rong-min, Cui Ming-liang, Wang You-qing, et al. Hierarchical compound fault diagnosis of rotating machinery based on multi-label learning[J]. Control and Decision-making, 2022,37(7): 1772-1778.
8 门茂琛, 段石磊, 郭磊. 基于多特征融合的电压致热型设备故障检测[J]. 电瓷避雷器, 2022(4): 228-235.
Mao-chen Men, Duan Shi-lei, Guo Lei. Fault detection of voltage heating equipment based on multi-feature fusion[J]. Electric Porcelain Lightning Arrester, 2022(4): 228-235.
9 陈晓雷, 孙永峰, 李策, 等. 基于卷积神经网络和双向长短期记忆的稳定抗噪声滚动轴承故障诊断[J]. 吉林大学学报: 工学版, 2022, 52(2): 296-309.
Chen Xiao-lei, Sun Yong-feng, Li Ce, et al. Stable anti-noise fault diagnosis of rolling bearing based on CNN-BiLSTM[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(2): 296-309.
10 付文秀, 周晓勇, 李弘扬, 等. 基于PSO-SVM的车载ATC设备故障诊断[J]. 北京交通大学学报, 2022, 46(2): 98-107.
Fu Wen-xiu, Zhou Xiao-yong, Li Hong-yang, et al. PSO-SVM-Based fault diagnosis of vehicle ATC equipment[J]. Journal of Beijing Jiaotong University, 2022,46(2): 98-107.
11 Nguyen T N, Ponciroli R, Bruck P, et al. A digital twin approach to system-level fault detection and diagnosis for improved equipment health monitoring[J]. Annals of Nuclear Energy, 2022, 170(6): 1-14.
12 Lemos T, Campos L F, Melo A, et al. Echo state network based soft sensor for monitoring and fault detection of industrial processes[J]. Computers & Chemical Engineering, 2021, 155: 1-12.
13 Yurtseven K, Karatepe E, Deniz E. Sensorless fault detection method for photovoltaic systems through mapping the inherent characteristics of PV plant site: simple and practical[J]. Solar Energy, 2021, 216: 96-110.
14 Haq M U, Din S U, Dan B. Low-temperature detection of sulfur-hexafluoride decomposition products using octahedral Co3O4-Modified NiSnO3 nanofibers[J]. ACS Applied Materials & Interfaces, 2022,14(7):9292-9306.
15 Zhou X, Liu G, Zhang X, et al. Re2FAD: a differential image registration and robust image fusion method framework for power thermal anomaly detection[J]. Optik, 2022, 259: 17-30.
16 Chen D, Tang T, Yao Y. Research on prediction algorithm of ship equipment heath condition[J]. Ocean Engineering, 2022, 249(4): 1-11.
17 Fischer A, Degener S, Liehr A, et al. Evaluation of extremely steep residual stress gradients based on a combined approach using laboratory‐scale equipment[J]. Journal of Applied Crystallography, 2021, 54(6):1793-1798.
18 Rodriguez A A, Miller C M, Monty C N. Field testing and cost–benefit evaluation of corrosion-protective coatings on winter maintenance equipment in the state of ohio[J]. Journal of Cold Regions Engineering, 2021, 35(1): 1-11.
19 Radatz H, Kragl A, Kampwerth J, et al. Application and evaluation of preselection approaches to decide on the use of equipment modules[J]. Chemical Engineering Research and Design, 2021, 173:89-107.
20 余孟阳, 杨帆. 信息链接技术下自动化设备现场故障运维仿真[J]. 计算机仿真, 2021, 38(12): 475-479.
Yu Meng-yang, Yang Fan. Field failure operation and maintenance simulation of automation equipment based on information link technology[J]. Computer Simulation, 2021,38 (12): 475-479.
[1] 翁渊瀚,李南. 基于时间序列模型的文本数据压缩存储算法[J]. 吉林大学学报(工学版), 2023, 53(7): 2109-2114.
[2] 冀汶莉,田忠,柴敬,张丁丁,王斌. 多属性融合分布式光纤导水裂隙带高度预测方法[J]. 吉林大学学报(工学版), 2023, 53(4): 1200-1210.
[3] 吴剑,许斌. 基于CEEMDAN理论的堆积层滑坡位移区间预测模型及仿真[J]. 吉林大学学报(工学版), 2023, 53(2): 562-568.
[4] 杜睿山,陈雨欣,孟令东. 可信云计算平台多源大数据时间序列调度算法[J]. 吉林大学学报(工学版), 2023, 53(11): 3194-3200.
[5] 李志慧,孙雅倩,陶鹏飞,李海涛,刘昕. 交通事故后的交通运行风险状态等级预测方法[J]. 吉林大学学报(工学版), 2022, 52(1): 127-135.
[6] 李雄飞,王婧,张小利,范铁虎. 基于SVM和窗口梯度的多焦距图像融合方法[J]. 吉林大学学报(工学版), 2020, 50(1): 227-236.
[7] 刘薇娜, 周小龙, 姜振海, 马风雷. 基于最优特征的改进经验模态分解方法[J]. 吉林大学学报(工学版), 2017, 47(6): 1957-1963.
[8] 姜万录,卢传奇,朱勇. 基于HHT和模糊C均值聚类的轴向柱塞泵故障识别[J]. 吉林大学学报(工学版), 2015, 45(2): 429-436.
[9] 李世武, 姚雪萍, 孙文财, 王琳虹, 赖祥翔, 王德强. 体现悬架特性的车辆载荷状态监测技术[J]. 吉林大学学报(工学版), 2014, 44(2): 335-342.
[10] 雷达, 钟诗胜. 基于奇异值分解和经验模态分解的航空发动机健康信号降噪[J]. 吉林大学学报(工学版), 2013, 43(03): 764-770.
[11] 李欢利, 郭立红, 陈涛, 杨丽梅, 王心醉, 董月芳. 基于改进的经验模态分解的虹膜识别方法[J]. 吉林大学学报(工学版), 2013, 43(01): 198-205.
[12] 林玉荣,王强. 基于一维经验模态分解的图像细节提取方法[J]. 吉林大学学报(工学版), 2011, 41(6): 1766-1770.
[13] 刘柏森,卢志茂,申丽然,金辉. 基于希尔伯特-黄变换的低信噪比语音端点检测[J]. 吉林大学学报(工学版), 2011, 41(03): 844-848.
[14] 王国光;王树勋;何丽桥 . 提取混沌中谐波信号的时频方法[J]. 吉林大学学报(工学版), 2006, 36(06): 963-0966.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李寿涛, 李元春. 在未知环境下基于递阶模糊行为的移动机器人控制算法[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] 刘庆民,王龙山,陈向伟,李国发. 滚珠螺母的机器视觉检测[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] 李红英;施伟光;甘树才 .

稀土六方Z型铁氧体Ba3-xLaxCo2Fe24O41的合成及电磁性能与吸波特性

[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] 张全发,李明哲,孙刚,葛欣 . 板材多点成形时柔性压边与刚性压边方式的比较[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] 杨树凯,宋传学,安晓娟,蔡章林 . 用虚拟样机方法分析悬架衬套弹性对
整车转向特性的影响
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] 冯金巧;杨兆升;张林;董升 . 一种自适应指数平滑动态预测模型[J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] 车翔玖,刘大有,王钲旋 .

两张NURBS曲面间G1光滑过渡曲面的构造

[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] 刘寒冰,焦玉玲,,梁春雨,秦卫军 . 无网格法中形函数对计算精度的影响[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] .

吉林大学学报(工学版)2007年第4期目录

[J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] 李月英,刘勇兵,陈华 . 凸轮材料的表面强化及其摩擦学特性
[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .