吉林大学学报(工学版) ›› 2024, Vol. 54 ›› Issue (9): 2531-2539.doi: 10.13229/j.cnki.jdxbgxb.20221455
• 交通运输工程·土木工程 • 上一篇
Jie CAO1,2(),Guang SU1,Hong ZHANG1(),Peng-hui LI1
摘要:
针对交通模式复杂和动态的时空相关性导致现有预测方法在结构深度和预测尺度方面不足以学习交通演变的问题,提出了一种结合胶囊网络(CapsNet)和深层双向LSTM(D-BiLSTM)的深度学习模型。该模型采用CapsNet识别路网的空间拓扑结构并提取空间特征,融合D-BiLSTM网络,同时考虑交通状态的前向和后向依赖关系,捕获不同历史时期的双向时间相关性,对目标区域内大规模复杂路网的交通进行预测。在真实交通路网速度数据集上进行的实验表明:提出模型的预测精度平均提高了10%以上,优于其他方法,在区域复杂路网的交通预测中具有较高的预测精度和良好的鲁棒性。
中图分类号:
1 | James J Q. Citywide traffic speed prediction: a geometric deep learning approach[J]. Knowledge-Based Systems, 2021, 212: No.106592. |
2 | Wu P, Huang Z, Pian Y, et al. A combined deep learning method with attention-based LSTM model for short-term traffic speed forecasting[J]. Journal of Advanced Transportation, 2020, 2020: No.8863724. |
3 | Navarro-Espinoza A, López-Bonilla O R, García-Guerrero E E, et al. Traffic flow prediction for smart traffic lights using machine learning algorithms[J]. Technologies, 2022, 10(1): 5. |
4 | Huang Z, Xu L, Lin Y. Multi-stage pedestrian positioning using filtered WiFi scanner data in an urban road environment[J]. Sensors, 2020, 20(11):No. 20113259. |
5 | Yang H, Li X, Qiang W, et al. A network traffic forecasting method based on SA optimized ARIMA–BP neural network[J]. Computer Networks, 2021, 193: No. 108102. |
6 | Kumar P B, Hariharan K. Time series traffic flow prediction with hyper-parameter optimized ARIMA models for intelligent transportation system[J]. Journal of Scientific and Industrial Research (JSIR), 2022, 81(4): 408-415. |
7 | Ghosh B, Dauwels J. Comparison of different Bayesian methods for estimating error bars with incident duration prediction[J]. Journal of Intelligent Transportation Systems, 2022, 26(4): 420-431. |
8 | Xu D, Wang Y, Peng P, et al. Real-time road traffic state prediction based on kernel-KNN[J]. Transportmetrica A: Transport Science, 2020, 16(1): 104-118. |
9 | Zhang L, Ma J, Liu X, et al. A novel support vector machine model of traffic state identification of urban expressway integrating parallel genetic and C-means clustering algorithm[J]. Tehnički vjesnik, 2022, 29(3): 731-741. |
10 | Toan T D, Truong V H. Support vector machine for short-term traffic flow prediction and improvement of its model training using nearest neighbor approach[J]. Transportation Research Record, 2021, 2675(4): 362-373. |
11 | Feng B, Xu J, Zhang Y, et al. Multi-step traffic speed prediction based on ensemble learning on an urban road network[J]. Applied Sciences, 2021, 11(10):No. 11104423. |
12 | Bao X, Jiang D, Yang X, et al. An improved deep belief network for traffic prediction considering weather factors[J]. Alexandria Engineering Journal, 2021, 60(1): 413-420. |
13 | Nguyen T, Nguyen G, Nguyen B M. EO-CNN: an enhanced CNN model trained by equilibrium optimization for traffic transportation prediction[J]. Procedia Computer Science, 2020, 176: 800-809. |
14 | Sha S, Li J, Zhang K, et al. RNN-based subway passenger flow rolling prediction[J]. IEEE Access, 2020, 8: 15232-15240. |
15 | Ma X, Zhong H, Li Y, et al. Forecasting transportation network speed using deep capsule networks with nested LSTM models[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(8): 4813-4824. |
16 | Abduljabbar R L, Dia H, Tsai P W. Unidirectional and bidirectional LSTM models for short-term traffic prediction[J]. Journal of Advanced Transportation, 2021, 11(1): No.5589075. |
17 | Wang S, Zhao J, Shao C, et al. Truck traffic flow prediction based on LSTM and GRU methods with sampled GPS data[J]. IEEE Access, 2020, 8: 208158-208169. |
18 | Van L T, Nguyen Q H, Le T D T. Emotion recognition with capsule neural network[J]. Computer Systems Science and Engineering, 2022, 41(3): 1083-1098. |
19 | Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[J]. Advances in Neural Information Processing Systems, 2017, 30:3856-3866. |
[1] | 温晓岳,钱国敏,孔桦桦,缪月洁,王殿海. TrafficPro:一种针对城市信控路网的路段速度预测框架[J]. 吉林大学学报(工学版), 2024, 54(8): 2214-2222. |
[2] | 王生生,李晨旭,王翔宇,姚志林,刘一申,吴佳倩,杨晴然. 基于改进残差胶囊网络和麻雀搜索的脑瘤图像分类[J]. 吉林大学学报(工学版), 2022, 52(11): 2653-2661. |
|