吉林大学学报(工学版) ›› 2022, Vol. 52 ›› Issue (11): 2653-2661.doi: 10.13229/j.cnki.jdxbgxb20210347
• 计算机科学与技术 • 上一篇
王生生1(),李晨旭1,王翔宇1,姚志林1(),刘一申2,吴佳倩2,杨晴然2
Sheng-sheng WANG1(),Chen-xu LI1,Xiang-yu WANG1,Zhi-lin YAO1(),Yi-shen LIU2,Jia-qian WU2,Qing-ran YANG2
摘要:
本文提出了基于缩放重构残差胶囊网络和麻雀搜索的核磁共振成像(MRI)脑瘤图像分类方法。首先,针对图像质量差的MRI脑瘤图像,采用基于麻雀搜索的图像增强方法提升图片质量;其次,采用胶囊网络解决医疗图像数据量小、数据集不平衡的问题;最后,针对胶囊网络对于大尺寸图像产生的梯度消失和梯度爆炸问题,采用改进的残差网络提取尺寸较大图片的关键特征,使用缩放重构,降低模型体积,在避免过拟合的同时提高计算速度。实验结果验证了本文提出的模型在小样本、低质量、大尺寸MRI脑瘤图像分类问题上的有效性。
中图分类号:
1 | Pan Y, Huang W, Lin Z, et al. Brain tumor grading based on neural networks and convolutional neural networks[C]∥37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Milan, Italy, 2015: 699-702. |
2 | Deepak S, Ameer P M. Brain tumor classification using deep CNN features via transfer learning[J]. Computers in Bbiology and Medicine, 2019, 111: 103345. |
3 | Navid G, Afshin S, Modjtaba R.Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images[J]. Biomedical Signal Processing and Control, 2020, 57: 101678. |
4 | Javaria A, Muhammad S, Nadia G, et al. Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network[J]. Pattern Recognition Letters, 2020, 129: 115-122. |
5 | Anupama M A, Sowmya V, Soman K P. Breast cancer classification using capsule network with preprocessed histology images[C]∥The 8th International Conference on Communication and Signal Processing, Melmaruvathur, India, 2019: 143-147. |
6 | Afshar P, Oikonomou A, Naderkhani F, et al. 3D-MCN: a 3D multi-scale capsule network for lung nodule malignancy prediction[J]. Scientific Reports, 2020, 10(1): 1-11. |
7 | Afshar P, Heidarian S, Naderkhani F, et al. Covid-caps: a capsule network-based framework for identification of covid-19 cases from x-ray images[J]. Pattern Recognition Letters, 2020, 138: 638-643. |
8 | Xue J K, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering An Open Access Journal, 2020, 8(1): 22-34. |
9 | Chen J, Yu W, Tian J, et al. Image contrast enhancement using an artificial bee colony algorithm[J]. Swarm and Evolutionary Computation, 2018, 38: 287-294. |
10 | Sabour S, Frosst N, Hinton G E. Dynamic routing between capsules[C]∥The 31st Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017: 3857-3867. |
11 | He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770-778. |
12 | 许骞艺, 秦贵和, 孙铭会, 等. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报: 工学版, 2021, 51(2): 704-711. |
Xu Qian-yi, Qin Gui-he, Sun Ming-hui, et al. Classification of drivers' head status based on improved ResNeSt[J].Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 704-711. | |
13 | 方明, 陈文强. 结合残差网络及目标掩膜的人脸微表情识别[J]. 吉林大学学报: 工学版, 2021, 51(1): 303-313. |
Fang Ming, Chen Wen-qiang. Face micro-expression recognition based on ResNet with object mask[J].Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 303-313. | |
14 | Minarno A E, Mandiri M H C, Munarko Y, et al. Convolutional neural network with hyperparameter tuning for brain tumor classification[J]. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics and Control, 2021, 6(2): 127-132. |
15 | Jaeyong K, Zahid U, Jeonghwan G. MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers[J]. Sensors, 2021, 21(6): 21062222. |
[1] | 白天,徐明蔚,刘思铭,张佶安,王喆. 基于深度神经网络的诉辩文本争议焦点识别[J]. 吉林大学学报(工学版), 2022, 52(8): 1872-1880. |
[2] | 曲福恒,丁天雨,陆洋,杨勇,胡雅婷. 基于邻域相似性的图像码字快速搜索算法[J]. 吉林大学学报(工学版), 2022, 52(8): 1865-1871. |
[3] | 秦贵和,黄俊锋,孙铭会. 基于双手键盘的虚拟现实文本输入[J]. 吉林大学学报(工学版), 2022, 52(8): 1881-1888. |
[4] | 杨怀江,王二帅,隋永新,闫丰,周跃. 简化型残差结构和快速深度残差网络[J]. 吉林大学学报(工学版), 2022, 52(6): 1413-1421. |
[5] | 方世敏. 基于频繁模式树的多来源数据选择性集成算法[J]. 吉林大学学报(工学版), 2022, 52(4): 885-890. |
[6] | 刘铭,杨雨航,邹松霖,肖志成,张永刚. 增强边缘检测图像算法在多书识别中的应用[J]. 吉林大学学报(工学版), 2022, 52(4): 891-896. |
[7] | 董绍江,朱朋,裴雪武,李洋,胡小林. 基于子领域自适应的变工况下滚动轴承故障诊断[J]. 吉林大学学报(工学版), 2022, 52(2): 288-295. |
[8] | 王生生,陈境宇,卢奕南. 基于联邦学习和区块链的新冠肺炎胸部CT图像分割[J]. 吉林大学学报(工学版), 2021, 51(6): 2164-2173. |
[9] | 赵宏伟,张子健,李蛟,张媛,胡黄水,臧雪柏. 基于查询树的双向分段防碰撞算法[J]. 吉林大学学报(工学版), 2021, 51(5): 1830-1837. |
[10] | 曹洁,屈雪,李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报(工学版), 2021, 51(5): 1785-1791. |
[11] | 王春波,底晓强. 基于标签分类的云数据完整性验证审计方案[J]. 吉林大学学报(工学版), 2021, 51(4): 1364-1369. |
[12] | 钱榕,张茹,张克君,金鑫,葛诗靓,江晟. 融合全局和局部特征的胶囊图神经网络[J]. 吉林大学学报(工学版), 2021, 51(3): 1048-1054. |
[13] | 周炳海,吴琼. 基于多目标的机器人装配线平衡算法[J]. 吉林大学学报(工学版), 2021, 51(2): 720-727. |
[14] | 许骞艺,秦贵和,孙铭会,孟诚训. 基于改进的ResNeSt驾驶员头部状态分类算法[J]. 吉林大学学报(工学版), 2021, 51(2): 704-711. |
[15] | 宋元,周丹媛,石文昌. 增强OpenStack Swift云存储系统安全功能的方法[J]. 吉林大学学报(工学版), 2021, 51(1): 314-322. |
|