Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (4): 954-963.doi: 10.13229/j.cnki.jdxbgxb.20210813

Previous Articles     Next Articles

Effects of methanol substitution percent on combustion and emission of diesel engines under plateau condition

Jian WANG1(),Wei YU1,Bin WANG2   

  1. 1.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212000,China
    2.Wuxi Diesel Engine Factory,FAW Jiefang Automobile Co. ,Ltd. ,Wuxi 214026,China
  • Received:2021-08-22 Online:2023-04-01 Published:2023-04-20

Abstract:

The altitude pressure of 10 m, 700 m and 2400 m were simulated to explore the combustion and emission of diesel-methanol dual fuel engine in different altitude. The test conditions were 25%, 50% and 75% load at 1800 r/min. The results demonstrated that under 25% load, misfire emerge in the cylinder at 40% methanol substitution percentage (MSP) and 2400 m, which lead to the peak pressure decrease in the cylinder, the combustion delay period will be prolonged, and the diffusion combustion will be shortened. Under 50% and 75% loads, the increasing of altitude and MSP result in peak pressure increasing in the cylinder. The combustion duration decreases with the increasing of MSP and increases with the increasing of altitude in all conditions. Compared with the pure diesel mode in 10 m, under different altitudes and MSP, the maximum ignition delay period of the engine is extended by 27.01% and the minimum is shortened by 28.99%. The maximum combustion duration is shortened by 43.20% and extended by 22.79%, the CA50 moves forward by 8.55% ~ 21.82%, and the in-cylinder combustion temperature rises by 1.45% ~ 23.83%. The brake thermal efficiency of the engine decreases with the increase of altitude and increases with the increase of MSP at 50% and 75% loads. However, brake thermal efficiency presents a more complex variation rule under 25% load. Among the pollutant emission, with the increase of MSP, NO x and Soot decreased simultaneously, HC and CO increased simultaneously under the same load. With the increase of altitude, the emission almost all showed an upward trend. The research can provide reference for the in-cylinder combustion and emission of diesel/methanol dual fuel engine in the plateau area.

Key words: power mechanical engineering, diesel/methanol dual fuel, altitude, combustion, emissions

CLC Number: 

  • TK428.9

Table 1

Main specifications of engine"

项目参数
型式直列四缸,四冲程,增压中冷
缸径×行程/(mm×mm)95×115
压缩比18.5
排量/L3.26
额定功率/kW75(2400 r·min-1
最大转矩/(N?m)320(1800 r·min-1

Table 2

Range and accuracy of parameters"

测量参数范围精度
转速/(r?min-10~6000±1
扭矩/(N·m)0~400±0.05(F.S.)
缸内压力/MPa0~25±0.05%(F.S.)
柴油耗/(kg?h-10~40±0. 4%(F.S.)
甲醇耗/(kg?h-10~40±0. 4%(F.S.)
排气温度/℃0~800±1
进排气压力/kPa0~40±0.5%(F.S.)

Table 3

Test scheme and conditions"

转速/(r·min-1扭矩/(N·m) (负荷率/%)海拔高度/m大气压力/kPa甲醇替代率/%
180079 (25)10100.30/10/20/30/40/50
70093.20/10/20/30/40/50
240075.60/10/20/30/40
158 (50)10100.30/10/20/30/40/50
70093.20/10/20/30/40/50
240075.60/10/20/30/40
237 (75)10100.30/10/20/30/40
70093.20/10/20/30/40
240075.60/10/20/30

Fig.1

Effects of different altitudes and MSP on in-cylinder pressure"

Fig.2

Effects of different altitude and MSP on ignition delay, combustion duration and CA50"

Fig.3

Effect of different altitude and MSP on average combustion temperature in cylinder"

Fig.4

Effect of different altitude and MSP on brake thermal efficiency"

Fig.5

Effect of different altitude and MSP on NO x emission"

Fig.6

Effect of different altitude and MSP onsoot emission"

Fig.7

Effect of different altitude and MSP on COemission"

Fig.8

Effect of different altitude and MSP on HCemission"

1 He C, Ge Y S, Ma C C, et al. Emission characteristics of a heavy-duty diesel engine at simulated high altitudes[J]. Science of The Total Environment, 2011, 409(17): 3138-3143.
2 Yu L X, Ge Y S, Tan J W, et al. Experimental investigation of the impact of biodiesel on the combustion and emission characteristics of a heavy duty diesel engine at various altitudes[J]. Fuel, 2014, 115: 220-226.
3 Ramos Á, García-Contreras R, Armas O. Performance, combustion timing and emissions from a light duty vehicle at different altitudes fueled with animal fat biodiesel, GTL and diesel fuels[J]. Applied Energy, 2016, 182: 507-517.
4 Shannak B A, Alhasan M. Effect of atmospheric altitude on engine performance[J]. Forschung im Ingenieurwesen, 2002, 67(4): 157-160.
5 Perez P L, Boehman A L. Performance of a single-cylinder diesel engine using oxygen-enriched intake air at simulated high-altitude conditions[J]. Aerospace Science and Technology, 2010, 14(2): 83-94.
6 Wang X, Ge Y S, Yu L X, et al. Comparison of combustion characteristics and brake thermal efficiency of a heavy-duty diesel engine fueled with diesel and biodiesel at high altitude[J]. Fuel, 2013, 107: 852-858.
7 . 轻型汽车污染物排放限值及测量方法(中国第六阶段) [S].
8 林学东, 江涛, 许涛, 等. 高压共轨柴油机起动工况高压泵控制策略[J]. 吉林大学学报: 工学版, 2018, 48(5): 1436-1443.
Lin Xue-dong, Jiang Tao, Xu Tao, et al. Control strategy of high pressure pump in starting condition of high pressure common rail diesel engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1436-1443.
9 刘忠长, 孙士杰, 田径, 等. 瞬态工况下喷油参数对柴油机排放及燃烧特性的影响[J]. 吉林大学学报: 工学版, 2014, 44(6): 1639-1646.
Liu Zhong-chang, Sun Shi-jie, Tian Jing, et al. Influences of fuel injection parameters on emissions and combustion of diesel engine under transient conditions[J]. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(6): 1639-1646.
10 刘忠长, 腾鹏坤, 田径, 等. 二级增压柴油机旁通阀调节特性[J]. 吉林大学学报: 工学版, 2017, 47(3): 796-803.
Liu Zhong-chang, Teng Peng-kun, Tian Jing, et al. Regulation characteristics of bypass valve of two stage turbocharged diesel engine[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(3): 796-803.
11 Wang X, Ge Y, Yu L, et al. Effects of altitude on the thermal efficiency of a heavy-duty diesel engine[J]. Energy, 2013, 59: 543-548.
12 徐华平, 石岩峰, 张旭, 等. 某高原增压柴油机喷油提前角优化及性能研究[J]. 内燃机工程, 2015, 36(6): 118-123.
Xu Hua-ping, Shi Yan-feng, Zhang Xu, et al. Optimization of injection advance angle and performance research of turbocharged diesel engine at high altitude[J]. Chinese Internal Combustion Engine Engineering, 2015, 36(6): 118-123.
13 刘瑞林,刘宏威,秦德. 涡轮增压柴油机高海拔(低气压)性能试验研究[J]. 内燃机学报, 2003, 20(3): 213-216.
Liu Rui-lin, Liu Hong-wei, Qin De. An experimental study on performance of turbocharged diesel engines at high altitude(low air pressure)[J]. Transactions of CSICE, 2003, 20(3): 213-216.
14 郭亮, 杨文昭, 王云开, 等. 废气再循环对丁醇/柴油混合燃料发动机的影响[J]. 吉林大学学报: 工学版, 2017, 47(6): 1767-1774.
Guo Liang, Yang Wen-zhao, Wang Yun-kai, et al. Effect of exhaust gas recirculation on internal combustion engine fueled with butanol/diesel blend[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(6): 1767-1774.
15 谭满志, 金文华, 张淑华, 等. 电控高压共轨柴油机燃用生物柴油的排放特性[J]. 吉林大学学报: 工学版, 2010, 40(3): 619-624.
Tan Man-zhi, Jin Wen-hua, Zhang Shu-hua, et al. Investigation on exhaust emission characteristics of electronically controlled high pressure common rail diesel fueled with biodiesel[J]. Journal of Jilin University(Engineering and Technology Edition), 2010, 40(3): 619-624.
16 Wei L, Yao C, Han G, et al. Effects of methanol to diesel ratio and diesel injection timing on combustion, performance and emissions of a methanol port premixed diesel engine[J]. Energy, 2016, 95: 223-232.
17 张学敏, 李芳, 葛蕴珊, 等. 甲醇柴油与生物柴油醛酮类排放物的研究[J]. 农业工程学报, 2012, 28(8): 247-251.
Zhang Xue-min, Li Fang, Ge Yun-shan, et al. Research on carbonyl compound emission of methanol-diesel fuel and bio-diesel fuel[J]. Transactions of The Chinese Society of Agricultural Engineering, 2012, 28(8): 247-251.
18 Fan C Y, Song C L, Lv G, et al. Evaluation of carbonyl compound emissions from a non-road machinery diesel engine fueled with a methanol/diesel blend[J]. Applied Thermal Engineering, 2018, 129: 1382-1391.
19 Wu H W, Fan C M, He J Y, et al. Optimal factors estimation for diesel/methanol engines changing methanol injection timing and inlet air temperature[J]. Energy, 2017, 141: 1819-1828.
20 Kumar S, Cho J H, Park J, et al. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 46-72.
21 Imran A, Varman M, Masjuki H H, et al. Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 739-751.
22 Pan W, Yao C D, Han G P, et al. The impact of intake air temperature on performance and exhaust emissions of a diesel methanol dual fuel engine[J]. Fuel, 2015, 162: 101-110.
23 Geng P, Yao C D, Wang Q G, et al. Effect of DMDF on the PM emission from a turbo-charged diesel engine with DDOC and DPOC[J]. Applied Energy, 2015, 148: 449-455.
24 Li Y P, Jia M, Liu Y D, et al. Numerical study on the combustion and emission characteristics of a methanol/diesel reactivity controlled compression ignition (RCCI) engine[J]. Applied Energy, 2013, 106: 184-197.
25 刘军恒, 姚春德, 魏立江, 等. 甲醇柴油比对二元燃料燃烧与排放特性的影响[J]. 工程热物理学报, 2014, 35(10): 2068-2072.
Liu Jun-heng, Yao Chun-de, Wei Li-jiang, et al. Effect of methanol and diesel fuel ratio on combustion and emission characteristic of a dual fuel engine[J]. Journal of Engineering Thermophysics, 2014, 35(10): 2068-2072.
26 Quan G W, Li J W, Wang P, et al. Investigation of operating range in a methanol fumigated diesel engine[J]. Fuel, 2015, 140: 164-170.
27 Wang Q G, Wang B, Yao C D, et al. Study on cyclic variability of dual fuel combustion in a methanol fumigated diesel engine[J]. Fuel, 2016, 164: 99-109.
28 Xu H J, Yao C D, Xu G L. Chemical kinetic mechanism and a skeletal model for oxidation of n-heptane/methanol fuel blends[J]. Fuel, 2012, 93: 625-631.
29 Ghazikhani M, Feyz M E, Mahian O, et al. Effects of altitude on the soot emission and fuel consumption of a light-duty diesel engine[J]. Transport, 2013, 28(2): 130-139.
30 Chunde Y, Hu J T, Peilin G, et al. Effects of injection pressure on ignition and combustion characteristics of diesel in a premixed methanol/air mixture atmosphere in a constant volume combustion chamber[J]. Fuel, 2017, 206: 593-602.
31 余林啸, 葛蕴珊, 谭建伟, 等. 重型柴油机在不同海拔地区的燃烧与排放特性[J]. 内燃机学报, 2013, 31(6): 507-512.
Yu Lin-xiao, Ge Yun-shan, Tan Jian-wei, et al. Combustion and emission characteristic of a heavy-duty diesel engine at different altitudes[J]. Transactions of CSICE, 2013, 31(6): 507-512.
[1] Jing QIN,De ZHENG,Yi-qiang PEI,Yong LYU,Qing-peng SU,Ying-bo WANG. Prediction method of engine performance and emission based on PSO-GPR [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1489-1498.
[2] Yan ZHANG,Wei LIU,Shu-yong ZHANG,Yi-qiang PEI,Meng-meng DONG,Jing QIN. Optimization on thermal load of combustion chamber on two/four⁃stroke switchable diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 504-514.
[3] Yan SU,Bo WANG,Yu LIU,Fang-xi XIE,Yun-feng HU,Jia-quan DUAN. Effect of diesel injection timing and gasoline ratio on the emissions of homogeneous charge induced ignition [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 37-45.
[4] Qing-wu ZHAO,Yong CHENG,Xue YANG,Ning WANG. A high⁃frequency nanosecond⁃pulsed ignition system for plasma assisted ignition and combustion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 414-421.
[5] Chang-cheng LIU,Zhong-chang LIU,Jing TIAN,Yun XU,Ze-yu YANG. In⁃cylinder exergy destruction during combustion process ofheavy⁃duty turbocharged diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1911-1919.
[6] Chang-qing SONG,Wen-miao CHEN,Jun LI,Da-wei QU,Hao CUI. Effects of single and dual ignition on combustion characteristics of natural gas under different equivalence ratios [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1929-1935.
[7] Xiang⁃huan ZU,Chuan⁃lei YANG,He⁃chun WANG,Yin⁃yan WANG. Exhaust gas recirculation performance evaluation of marine diesel engine and its application [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 805-815.
[8] DONG Wei,SONG Bai-da,QIU Li-tao,SUN Hao-tian,SUN Ping,PU Chao-jie. Effect of fuel ratio of two injections on combustion and emissions in warm-up process of gasoline direct injection engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1755-1761.
[9] YANG Shuai, FENG Zhi-wei, ZHAO Zhi-guo, ZHOU Yi. 1-Dimensional simulation analysis about the influence of different Miller cycle strategies on diesel engine operating process [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1444-1454.
[10] JIANG Tao, LIN Xue-dong, LI De-gang, GU Jing-jing. Simulation of effect of injection method in compressed natural gas direct injection(CNG-DI) engine on formation mechanism of mixed gas and combustion characteristics [J]. 吉林大学学报(工学版), 2018, 48(3): 735-743.
[11] SUN Xiao-ying, WANG Zhen, YANG Jin-peng, HU Ze-zheng, CHEN Jian. Electromagnetic susceptibility assessment of electronic throttle based on Bayesian network [J]. 吉林大学学报(工学版), 2018, 48(1): 281-289.
[12] GUO Liang, YANG Wen-zhao, WANG Yun-kai, SUN Wan-chen, CHENG Peng, LI Guo-liang. Effect of exhaust gas recirculation on internal combustion engine fueled with butanol/diesel blend [J]. 吉林大学学报(工学版), 2017, 47(6): 1767-1774.
[13] PENG Wei, LI Guo-xiang, YAN Wei. Improvement in wall functions for engine radiators [J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[14] TANG Zhi-gang, ZHANG Li, SHANG Hui-chao, LYU Xiao-hui, CHEN Xi, ZHENG Ren-wei. Combustion characteristics in glow-plug ignition miniature ICE and influence of residual gas [J]. 吉林大学学报(工学版), 2017, 47(3): 811-818.
[15] HAN Lin-pei, HONG Wei, SU Yan, XIE Fang-xi, CHEN Jing, DU Wen-chang. Effect of GDI engine exhaust valve secondary open on refluent EGR stratification and combustion characteristics [J]. 吉林大学学报(工学版), 2017, 47(1): 113-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!