Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (2): 414-421.doi: 10.13229/j.cnki.jdxbgxb20191085

Previous Articles    

A high⁃frequency nanosecond⁃pulsed ignition system for plasma assisted ignition and combustion

Qing-wu ZHAO(),Yong CHENG(),Xue YANG,Ning WANG   

  1. School of Energy and Power Engineering,Shandong University,Jinan 250061,China
  • Received:2019-11-27 Online:2021-03-01 Published:2021-02-09
  • Contact: Yong CHENG E-mail:zhaoqwu@foxmail.com;cysgd@sdu.edu.cn

Abstract:

High-frequency nanosecond pulsed discharge is an effective way to generate non-equilibrium plasma for plasma assisted ignition and combustion research. In this paper, a compact high-frequency nanosecond-pulsed ignition system is designed based on resonant charging and magnetic pulse compression. Details of the electrical architecture and working principles of the ignition system are presented. The system can produce high voltage pulses over 10 kV, with a rising time of 20 ns, and a full width at half maximum of 50 ns, at repetition rate up to 16 kHz. Test results show that 10 pulses at repetition rate of 16 kHz have larger discharge volume and higher brightness than single pulse, and the utilization of coaxial electrode enlarges the discharge volume compared with pin-to-pin electrode. The experiment results show that the ignition delay time of multi-pulse discharge is much shorter than that of single-pulse discharge, and coaxial electrode discharge can significantly shorten the ignition delay time compared to pin-to-pin electrode with the same pulse number.

Key words: power mechanical engineering, ignition system, plasma, nanosecond pulse

CLC Number: 

  • TK413.9

Fig.1

Schematic of NPD ignition system"

Fig.2

Equivalent circuit of pulsed power generator"

Fig.3

Simulation model of pulsed power generator"

Table 1

Parameters of magnetic core in model"

参数数值
外径/cm4
内径/cm2.5
截面积/cm1.2
饱和磁感应强度/T0.8
剩余磁感应强度/T0.7
矫顽力/(A·m-1)16

Fig.4

Simulation results of voltage waveform"

Fig.5

Simulation results:enlargement of voltage waveform of high voltage side"

Fig.6

Operating intervals of charging stage"

Fig.7

Operating intervals of discharging stage"

Table 2

Specifications of main components"

器件型号/规格说明
S1S2FGA25N1201200 V,25 A
D1D2FR3071000 V,3 A
C1630 V/luFCBB电容
PT磁芯40*25*20超微晶1K107J
C2C320 kV/1 nF高压瓷片电容
D3CL01-1212 kV,0.5 A

Fig.8

Image of pulsed power generator"

Fig.9

Test results of voltage waveform"

Fig.10

Waveform of 4 pulses under a repetitive frequency of 16 kHz"

Fig.11

Voltage, current, and energy waveforms from a single nanosecond discharge pulse"

Table 3

Parameters of discharge experiments"

组别电极类型放电参数
a单点电极1个脉冲
b单点电极10 kHz,10个脉冲
c同轴电极10 kHz,10个脉冲
d单点电极16 kHz,10个脉冲
e同轴电极16 kHz,10个脉冲

Fig.12

Image of coaxial electrode"

Fig.13

Images of NPD under different electrode types and discharge parameters"

Fig.14

In-chamber pressure under different discharge sets"

Fig.15

NCHR under different discharge sets"

1 宋昌庆, 陈文淼, 李君, 等. 不同当量比下单双点火对天然气燃烧特性的影响[J]. 吉林大学学报: 工学版, 2019, 49(6): 1929-1935.
Song Chang-qing, Chen Wen-miao, Li Jun, et al. Effects of single and dual ignition on combustion characteristics of natural gas under different equivalence ratios[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(6): 1929-1935.
2 李伟峰, 刘忠长, 王忠恕, 等. N2和 CO2稀释对天然气发动机燃烧和NOx排放的影响[J]. 吉林大学学报: 工学版, 2015, 45(4): 1115-1123.
Li Wei-feng, Liu Zhong-chang, Wang Zhong-shu,et al. Effects of N2 and CO2 dilution on the combustion and NOx emissions of natural gas engines[J].Journal of Jilin University (Engineering and Technology Edition), 2015, 45(4): 1115-1123.
3 Ju Y, Sun W. Plasma assisted combustion: dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48: 21-83.
4 Klimov A, Bityurin V, Moralev I, et al. Plasma assisted ignition and combustion[C]∥AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2006: 10.2514/6.2005-3428.
5 Starikovskaia S M. Plasma-assisted ignition and combustion: nanosecond discharges and development of kinetic mechanisms[J]. Journal of Physics D: Applied Physics, 2014, 47(35): 353001.
6 聂万胜, 周思引, 车学科. 纳秒脉冲放电等离子体助燃技术研究进展[J]. 高电压技术, 2017, 43(6): 1749-1758.
Nie Wan-sheng, Zhou Si-yin, Che Xue-ke. Review of plasma assisted combustion tecnology by nanosecond pulsed discharge[J]. High Voltage Engineering, 2017, 43(6): 1749-1758.
7 林烈, 吴承康. 大气压非平衡等离子体中非平衡度的探讨[J]. 核聚变与等离子体物理, 1998, 18(2): 57-60.
8 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-706.
Shao Tao, Zhang Cheng, Wang Rui-xue, et al. Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-706.
9 Takana H, Nishiyama H. Numerical simulation of nanosecond pulsed DBD in lean methane-air mixture for typical conditions in internal engines[J]. Plasma Sources Science and Technology, 2014, 23(3): 1-9.
10 Akiyama H, Heller R.Bioelectrics[M]. Tokyo, Japan: Springer, 2017.
11 Blajan M, Umeda A, Shimizu K. Surface treatment of glass by microplasma[J]. IEEE Transactions on Industry Applications, 2013, 49(2): 714-720.
12 Kuroki T, Oishi T, Yamamoto T, et al. Bromomethane decomposition using a pulsed dielectric barrier discharge[J]. IEEE Transactions on Industry Applications, 2012, 49(1): 293-297.
13 Shao T, Zhang D, Yu Y, et al. A compact repetitive unipolar nanosecond-pulse generator for dielectric barrier discharge application[J]. IEEE Transactions on Plasma Science, 2010, 38(7): 1651-1655.
14 Liu Y, Liu S, Han Y, et al. Optimization design of a repetitive nanosecond pulse generator based on saturable pulse transformer and magnetic switch[J]. IEEE Transactions on Plasma Science, 2015, 43(9): 3277-3285.
15 Lefkowitz J K, Guo P, Ombrello T, et al. Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge[J]. Combustion and Flame, 2015, 162(6): 2496-2507.
16 Lefkowitz J K, Ombrello T. An exploration of inter-pulse coupling in nanosecond pulsed high frequency discharge ignition[J]. Combustion and Flame, 2017, 180: 136-147.
17 Evans M D G, Baillard V J P, Maqueo P D G, et al. Compact nanosecond magnetic pulse compression generator for high-pressure diffuse plasma generation[J]. IEEE Transactions on Plasma Science, 2017, 45(8): 2358-2365.
18 Rusterholtz D L, Lacoste D A, Stancu G D, et al. Ultrafast heating and oxygen dissociation in atmospheric pressure air by nanosecond repetitively pulsed discharges[J]. Journal of Physics D: Applied Physics, 2013, 46(46): 464010.
19 Xiao D. Gas Discharge and Gas Insulation[M]. Berlin, Heidelberg: Springer, 2016.
20 Hwang J, Bae C, Park J, et al. Microwave-assisted plasma ignition in a constant volume combustion chamber[J]. Combustion and Flame, 2016, 167: 86-96.
[1] Xin-xin LI,Da-yu LI,Zi-rui ZHAO,Ya-jun ZHOU. Effect of low⁃temperature plasma treatment power on storage quality of spiced beef [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1934-1940.
[2] PENG Wei, LI Guo-xiang, YAN Wei. Improvement in wall functions for engine radiators [J]. 吉林大学学报(工学版), 2017, 47(3): 804-810.
[3] TANG Zhi-gang, ZHANG Li, SHANG Hui-chao, LYU Xiao-hui, CHEN Xi, ZHENG Ren-wei. Combustion characteristics in glow-plug ignition miniature ICE and influence of residual gas [J]. 吉林大学学报(工学版), 2017, 47(3): 811-818.
[4] YANG Yue, LI Xue, XU Xiao-dan. Microstructure and properties of sintered Ti-B-C-N power [J]. 吉林大学学报(工学版), 2017, 47(2): 552-556.
[5] QIU Chun-ling,ZENG Xiao-hui,LONG Tao,BAO Ze-min,WANG Pei-zhi. Operating characteristics of duoplasmatron ion source [J]. 吉林大学学报(工学版), 2015, 45(1): 161-166.
[6] SHANG Yan-geng, WANG Wen-quan, HUANG Shi-ming, LI Xiu-juan, ZHANG Gui-lan. Microstructures and properties of plasma surfaced NiCrBSi+WC/Co layers [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 198-201.
[7] CHEN Chen,HUANG Jian-qiang,LV Mo,DANG Jing-min,WANG Yi-ding. High-precision narrow pulse drive power for infrared quantum cascade laser [J]. 吉林大学学报(工学版), 2011, 41(6): 1738-1742.
[8] WANG Qi-song, ZHAO Yong-ping, LI Mu-tian. Secondary voltage simulation algorithm for automotive ignition system [J]. 吉林大学学报(工学版), 2011, 41(4): 1015-1019.
[9] GAO Yin-Han, FAN Kuan-Gang, YANG Kai-Yu, DOU Yan-Hong, JIA Wen-Yong. Simulation analysis of electromagnetic radiation of car ignition system [J]. 吉林大学学报(工学版), 2011, 41(02): 387-0392.
[10] LU Guang-lin, QIU Xiao-ming, BAI Yang, LUN Xin-jie|DENG Bao-qing,REN Lu-qu. Microstructure and performance of c-BN bionic wearresistant composites [J]. 吉林大学学报(工学版), 2011, 41(01): 73-0077.
[11] HAN Yao-Wu, SUN Da-Qian, GU Xiao-Yan, WANG Wen-Quan, XUAN Zhao-Zhi. Effect of plasma spray parameters on microstructures and erosion resistance of Ni based coatings [J]. 吉林大学学报(工学版), 2010, 40(02): 461-0466.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!