Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (8): 2421-2429.doi: 10.13229/j.cnki.jdxbgxb.20211070
Xiao-jun JIN1(),Yan-xia SUN2,Jia-lin YU3,Yong CHEN1()
CLC Number:
1 | 金月, 肖宏儒, 曹光乔, 等. 我国叶类蔬菜机械化水平现状与评价方法研究[J]. 中国农机化学报, 41(12): 196-201. |
Jin Yue, Xiao Hong-ru, Cao Guang-qiao, et al. Research on status and evaluation methods of leafy vegetable mechanization production level in China[J]. Journal of Chinese Agricultural Mechanization, 41(12): 196-201. | |
2 | Ryder E. World vegetable industry: production, breeding, trends[J]. Horticultural Reviews, 2011, 38: 299-356. |
3 | Han J, Luo Y, Yang L, et al. Acidification and salinization of soils with different initial pH under greenhouse vegetable cultivation[J]. Journal of Soils and Sediments, 2014, 14(10): 1683-1692. |
4 | 陆海涛, 吕建强, 金伟, 等. 我国叶类蔬菜机械化收获技术的发展现状[J]. 农机化研究, 2018, 40(6): 261-268. |
Lu Hai-tao, Lv Jian-qiang, Jin Wei, et al. The current situation of the mechanized harvesting technology development of leaf vegetable in China[J]. Journal of Agricultural Mechanization Research, 2018, 40(6): 261-268. | |
5 | 徐艳蕾, 何润, 翟钰婷, 等. 基于轻量卷积网络的田间自然环境杂草识别方法[J]. 吉林大学学报:工学版, 2021, 51(6): 2304-2312. |
Xu Yan-lei, He Run, Zhai Yu-ting, et al. Weed identification method based on deep transfer learning in field natural environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2304-2312. | |
6 | 王刚, 刘慧力, 贾洪雷, 等. 触碰定位式玉米行间除草装置的设计与试验[J]. 吉林大学学报:工学版, 2021, 51(4): 1518-1527. |
Wang Gang, Liu Hui-li, Jia Hong-lei, et al. Design and experiment of touching-positioning weeding device for inter-row maize (Zea Mays L.)[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1518-1527. | |
7 | 洪晓玮, 陈勇, 杨超淞, 等. 有机蔬菜大棚除草机器人研制[J]. 制造业自动化, 2021, 43(5): 33-36. |
Hong Xiao-wei, Chen Yong, Yang Chao-song, et al. Development of a weeding robot for organic vegetable greenhouse[J]. Manufacturing Automation, 2021, 43(5): 33-36. | |
8 | Dai X, Xu Y, Zheng J, et al. Comparison of image-based methods for determining the inline mixing uniformity of pesticides in direct nozzle injection systems[J]. Biosystems Engineering, 2020, 190: 157-175. |
9 | Lanini W, Strange M. Low-input management of weeds in vegetable fields[J]. California Agriculture, 1991, 45(1): 11-13. |
10 | 金小俊, 陈勇, 孙艳霞. 农田杂草识别方法研究进展[J]. 农机化研究, 2011, 33(7): 23-27, 33. |
Jin Xiao-jun, Chen Yong, Sun Yan-xia. Research advances of weed identification in agricultural fields[J]. Journal of Agricultural Mechanization Research, 2011, 33(7): 23-27, 33. | |
11 | 毛文华, 张银桥, 王辉, 等. 杂草信息实时获取技术与设备研究进展[J]. 农业机械学报, 2013, 44(1): 190-195. |
Mao Wen-hua, Zhang Yin-qiao, Wang Hui, et al. Advance techniques and equipments for real-time weed detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1): 190-195. | |
12 | 金小俊, 陈勇, 侯学贵, 等. 基于机器视觉的除草机器人杂草识别[J]. 山东科技大学学报:自然科学版, 2012, 31(2): 104-108. |
Jin Xiao-jun, Chen Yong, Hou Xue-gui, et al. Weed recognition of the machine vision based weeding robot[J]. Journal of Shandong University of Science and Technology (Natural Science), 2012, 31(2): 104-108. | |
13 | 陈良宵, 王斌. 基于形状特征的叶片图像识别算法比较研究[J]. 计算机工程与应用, 2017 (9): 17-25. |
Chen Liang-xiao, Wang Bin. Comparative study of leaf image recognition algorithm based on shape feature[J]. Computer Engineering and Applications, 2017 (9): 17-25. | |
14 | Rojas C P, Guzmán L, Toledo N V. Weed recognition by SVM texture feature classification in outdoor vegetable crops images[J]. Ingeniería E Investigación, 2017, 37(1): 68-74. |
15 | Bakhshipour A, Jafari A, Nassiri S M, et al. Weed segmentation using texture features extracted from wavelet sub-images[J]. Biosystems Engineering, 2017, 157: 1-12. |
16 | 仇裕淇, 黄振楠, 阮昭, 等. 机器视觉技术在农业生产智能化中的应用综述[J]. 机械研究与应用, 2019, 32(16): 202-206. |
Qiu Yu-qi, Huang Zhen-nan, Ruan Zhao, et al. Review on application of machine vision in intelligent agricultural production[J]. Mechanical Research & Application, 2019, 32(16): 202-206. | |
17 | Liakos K G, Busato P, Moshou D, et al. Machine learning in agriculture: a review[J]. Sensors, 2018, 18(8): 18082674. |
18 | Wang A, Zhang W, Wei X. A review on weed detection using ground-based machine vision and image processing techniques[J]. Computers and Electronics in Agriculture, 2019, 158: 226-240. |
19 | Jordan M I, Mitchell T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349(6245): 255-260. |
20 | Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377. |
21 | Schmidhuber J. Deep learning in neural networks: an overview[J]. Neural Networks, 2015, 61: 85-117. |
22 | Shi J, Li Z, Zhu T, et al. Defect detection of industry wood veneer based on NAS and multi-channel mask R-CNN[J]. Sensors, 2020, 20(16): 20164398. |
23 | Yu Y, Liu Y, Chen J, et al. Detection method for bolted connection looseness at small angles of timber structures based on deep learning[J]. Sensors, 2021, 21(9): 20193106. |
24 | 孙红, 李松, 李民赞, 等. 农业信息成像感知与深度学习应用研究进展[J]. 农业机械学报, 2020, 51(5): 1-17. |
Sun Hong, Li Song, Li Min-zan, et al. Research progress of image sensing and deep learning in agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 1-17. | |
25 | 邓向武, 马旭, 齐龙, 等. 基于卷积神经网络与迁移学习的稻田苗期杂草识别[J]. 农机化研究, 2021, 43(10): 167-171. |
Deng Xiang-wu, Ma Xu, Qi Long, et al. Recognition of weeds at seedling stage in paddy fields using convolutional neural network and transfer Learning[J]. Journal of Agricultural Mechanization Research, 2021, 43(10): 167-171. | |
26 | Yu J, Schumann A W, Sharpe S M, et al. Detection of grassy weeds in bermudagrass with deep convolutional neural networks[J]. Weed Science, 2020, 68(5): 545-552. |
27 | Hasan A M, Sohel F, Diepeveen D, et al. A survey of deep learning techniques for weed detection from images[J]. Computers and Electronics in Agriculture, 2021, 184: 106067. |
28 | 董亮, 雷良育, 李雪原, 等. 基于改进型人工神经网络的温室大棚蔬菜作物苗期杂草识别技术[J]. 北方园艺, 2017 (22): 79-82. |
Dong Liang, Lei Liang-yu, Li Xue-yuan, et al. Weed identification technology of greenhouse vegetable crops in greenhouse based on improved artificial neural network[J]. Northern Horticulture, 2017 (22): 79-82. | |
29 | 孙俊, 谭文军, 武小红, 等. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报, 2019, 35(12): 184-190. |
Sun Jun, Tan Wen-jun, Wu Xiao-hong, et al. Real-time recognition of sugar beet and weeds in complex backgrounds using multi-channel depth-wise separable convolution model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 184-190. | |
30 | Osorio K, Puerto A, Pedraza C, et al. A deep learning approach for weed detection in lettuce crops using multispectral images[J]. AgriEngineering, 2020, 2(3): 471-488. |
31 | Elstone L, How K Y, Brodie S, et al. High speed crop and weed identification in lettuce fields for precision weeding[J]. Sensors, 2020, 20(2): 455-469. |
32 | Chen K, Wang J, Pang J, et al. MMDetection: open mmlab detection toolbox and benchmark[J]. arXiv preprint arXiv:. |
33 | 岑海燕, 朱月明, 孙大伟, 等. 深度学习在植物表型研究中的应用现状与展望[J]. 农业工程学报, 2020, 36(9): 1-16. |
Cen Hai-yan, Zhu Yue-ming, Sun Da-wei, et al. Current status and future perspective of the application of deep learning in plant phenotype research[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 1-16. | |
34 | 马志艳, 朱熠, 杨磊. 基于视觉的苗期作物株间除草关键技术研究现状[J]. 中国农机化学报, 2020, 41(2): 32-38. |
Ma Zhi-yan, Zhu Yi, Yang Lei. Research status of key techniques of inter-plant weeding in seedling crops based on vision[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 32-38. | |
35 | Liu W, Anguelov D, Erhan D, et al. Ssd: single shot multibox detector[C]∥Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 2016:46448. |
36 | Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection[C]∥Proceedings of the Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017:318-327. |
37 | Tian Z, Shen C, Chen H, et al. Fcos: fully convolutional one-stage object detection[C]∥Proceedings of the Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea,2019:01355. |
38 | Burgos-Artizzu X P, Ribeiro A, Guijarro M, et al. Real-time image processing for crop/weed discrimination in maize fields[J]. Computers and Electronics in Agriculture, 2011, 75(2): 337-346. |
[1] | Yong-shuo WANG,Jian-ming KANG,Qiang-ji PENG,Ying-kai CHEN,Hui-min FANG,Meng-meng NIU,Shao-wei WANG. Design and experiment of obstacle avoidance weeding machine for fruit trees [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2410-2420. |
[2] | Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015. |
[3] | Feng LYU,Nian LI,Zhuang-zhuang FENG,Yang-hang ZHANG. Method of collaborative filtering recommendation of personalized product-service system based on user [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1935-1942. |
[4] | Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426. |
[5] | Fei WU,Hao-ye NONG,Chen-hao MA. Tool wear prediction method based on particle swarm optimizationlong and short time memory model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 989-997. |
[6] | Wen-li JI,Zhong TIAN,Jing CHAI,Ding-ding ZHANG,Bin WANG. Prediction of water⁃flowing height in fractured zone based on distributed optical fiber and multi⁃attribute fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1200-1210. |
[7] | Ke HE,Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO. Wheel odometry error prediction model based on transformer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 653-662. |
[8] | Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202. |
[9] | Xiao-ying LI,Ming YANG,Rui QUAN,Bao-hua TAN. Unbalanced text classification method based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1889-1895. |
[10] | Xuan-jing SHEN,Xue-feng ZHANG,Yu WANG,Yu-bo JIN. Multi⁃focus image fusion algorithm based on pixel⁃level convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1857-1864. |
[11] | Dan HU,Xin MENG. Vessel search method by earth observation satellite based on time⁃varying grid [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1896-1903. |
[12] | Bin WANG,Bing-hui HE,Na LIN,Wei WANG,Tian-yang LI. Tea plantation remote sensing extraction based on random forest feature selection [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1719-1732. |
[13] | Ming-hua GAO,Can YANG. Traffic target detection method based on improved convolution neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1353-1361. |
[14] | Huai-jiang YANG,Er-shuai WANG,Yong-xin SUI,Feng YAN,Yue ZHOU. Simplified residual structure and fast deep residual networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1413-1421. |
[15] | Hai-yang JIA,Rui XIA,An-qi LYU,Ceng-xuan GUAN,Juan CHEN,Lei WANG. Panoramic mosaic approach of ultrasound medical images based on template fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 916-924. |
|