Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (8): 1896-1903.doi: 10.13229/j.cnki.jdxbgxb20210194

Previous Articles    

Vessel search method by earth observation satellite based on time⁃varying grid

Dan HU1,2(),Xin MENG1()   

  1. 1.Key Laboratory of Electronics and Information Technology for Space Systems,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2021-03-15 Online:2022-08-01 Published:2022-08-12
  • Contact: Xin MENG E-mail:rwindwow@163.com;mengxin@nssc.ac.cn

Abstract:

In order to improve the effectiveness, a time-varying grid model is proposed to divide the spatial and temporal dimensions of the region according to the satellite earth observation width and the maximum vessel speed. The vessel track prediction problem is transformed into a time-varying grid transition probability prediction problem, which effectively reduces the complexity of multi-step prediction. The multi-step time-varying grid transfer prediction with high accuracy is realized by the improved sequence to sequence(Seq2Seq) model, which has learned a large number of historical tracks in the research area. A satellite observation task planning algorithm for time-varying grids is designed and simulation experiments are carried out based on actual AIS data and satellite information. The results of experiments show that the Seq2Seq model based on deep learning has high accuracy in multi-step prediction of time-varying grids, which effectively improves the effectiveness of vessel search by earth observation satellites.

Key words: compute application, time-varying grid, vessel search, earth observation satellite, deep learning, sequence to sequence model

CLC Number: 

  • TP301.6

Fig.1

Diagram of vessel search based on observation satellite"

Fig.2

Diagram of time-varying grid divided"

Fig.3

Diagram of time-varying grid mapping"

Fig.4

Diagram of time-varying grid mapping"

Fig.5

Seq2Seq model for time-varying grids prediction"

Table 1

Information of satellites"

卫星名称卫星代号轨道高度/km倾角/(°)降交点地方时幅宽/km侧摆能力/(°)
资源一号04星ZY1-0477898.500010:30 AM60±32
资源三号01星ZY3-0150697.421010:30 AM51±32
资源三号02星ZY3-0250597.421010:30 AM51±32
高分一号卫星GF-0164598.050610:30 AM60±35
高分二号卫星GF-0263197.090810:30 AM45±35
实践九号A星SJ9-A64597.982010:30 AM30±35

Table 2

TLE of satellites"

卫星代号两行根数
ZY1-04

1 40336U 14079A 21041.78300343 -.00000110 00000-0 -23164-4 0 9997

2 40336 98.5363 117.3056 0001856 97.6028 262.5367 14.35423066323875

ZY3-01

1 38046U 12001A 21041.77982109 .00000761 00000-0 37025-4 0 9991

2 38046 97.3946 118.1644 0004704 78.3672 32.1382 15.21336706504859

ZY3-02

1 41556U 16033A 21041.88121295 .00000634 00000-0 31299-4 0 9999

2 41556 97.3402 117.4403 0000436 284.5074 203.7350 15.21367274261165

GF-01

1 39150U 13018A 21041.79204228 .00000042 00000-0 13123-4 0 9993

2 39150 97.8455 118.2646 0020503 70.0849 290.2565 14.76565123420188

GF-02

1 40118U 14049A 21041.74098995 .00000065 00000-0 15082-4 0 9992

2 40118 97.8174 119.3216 0009141 110.3054 249.9140 14.80653293350338

SJ9-A

1 38860U 12056A 21041.73090786 .00000043 00000-0 12358-4 0 9997

2 38860 97.6461 84.4101 0029174 174.9656 185.1845 14.79610380449670

Table 3

Parameters of seq2seq model"

参数名称参数值
编码器输入特征维度8
编码器隐层神经元数量128
编码器隐层层数4
编码器输出特征维度32
解码器输入特征维度32
解码器隐层神经元数量128
解码器隐层层数4
解码器输出特征维度18
训练批次大小32
训练轮数4000

Table 4

Minimum cross entropy loss"

输入数据长度输出数据长度最小交叉熵
30152.81×10-6
30204.78×10-6
30259.72×10-6
20206.12×10-6
40204.11×10-6

Fig.6

Cross entropy loss curves of seq2seq model"

Table 5

Windows of satellites access to active region"

序号窗口开始时间窗口结束时间过区域次数
12019-01-02 22∶53∶492019-01-03 02∶13∶4411
22019-01-03 23∶11∶172019-01-04 01∶00∶5310
32019-01-05 23∶41∶392019-01-06 01∶49∶1310
42019-01-11 22∶48∶542019-01-12 02∶01∶1211
52019-01-14 23∶29∶342019-01-15 02∶07∶028
62019-01-23 23∶17∶272019-01-24 01∶12∶388

Table 6

Experiment results of vessel search used by satellites"

序号基于高斯分布船舶运动预测的搜索方法基于时变网格的船舶搜索方法
最早搜索到船舶时间延时/min搜索到船舶次数最早搜索到船舶时间延时/min搜索到船舶次数
1117.503117.374
2/0169.972
3/0178.752
4110.482110.472
5/082.252
6/087.851
1 Paul E B, Carmine P, David A B F. Optimal search,location and tracking of surface maritime targets by a constellation of surveillance satellites[R]. Edinburgh:DSTO Information Sciences Laboratory, 2002.
2 王慧林,邱涤珊,马满好,等.基于先验信息的海洋移动目标卫星成像侦测任务规划[J].火力与指挥控制,2011, 36(3): 105-110.
Wang Hui-lin, Qiu Di-shan, Ma Man-hao, et al. Research on mission-planning of satellite imaging reconnaissance for ocean moving targets based on the prior information[J]. Fire Control & Command Control, 2011, 36(3): 105-110.
3 陈杰,邢利菊. 面向海洋移动目标成像侦察方法研究[J]. 计算机与数字工程, 2014, 42(3): 395-398.
Cheng Jie, Xing Li-ju. Imaging reconnaissance method facing ocean motion target[J]. Computer & Digital Engineering, 2014, 42(3): 395-398.
4 梅关林,冉晓旻,范亮,等. 面向移动目标的卫星传感器调度技术研究[J]. 信息工程大学学报, 2016, 17(5): 513-517.
Mei Guan-lin, Ran Xiao-min, Fan Liang, et al. Research on satellite sensor scheduling technology for moving target[J]. Journal of Information Engineering University, 2016, 17(5): 513-517.
5 Li J F, Geng-xi Y Z, Yao F, et al.Using multiple satellites to search for maritime moving targets based on reinforcement learning[J].Journal of Donghua University(English Edition), 2016, 33(5): 749-754.
6 张海龙,夏维,胡笑旋,等. 面向多障碍物海面卫星搜索动目标方法[J]. 系统工程与电子技术, 2018, 40(10): 2256-2262.
Zhang Hai-long, Xia Wei, Hu Xiao-xuan, et al. Method for moving targets search by satellites on multi-obstacle sea[J]. Systems Engineering and Electronics, 2018, 40(10): 2256-2262.
7 夏忠,张海龙,靳鹏.基于信息融合的多星搜索动目标问题[J].火力与指挥控制, 2020, 45(7): 20-25, 30.
Xia Zhong, Zhang Hai-long, Jin Peng. Research on moving target problem of multi-satellite search based on information fusion[J]. Fire Control & Command Control, 2020, 45(7): 20-25, 30.
8 Qiao S, Shen D, Wang X, et al. A self-adaptive parameter selection trajectory prediction approach via hidden markov models[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(1):284-296.
9 Rong H, Teixeira A P, Soares C G. Ship trajectory uncertainty prediction based on a Gaussian process model[J]. Ocean Engineering, 2019, 182(15): 499-511.
10 Liang Y, Zhang H. Ship track prediction based on ais data and pso optimized LSTM network[J]. International Core Journal of Engineering, 2020, 6(5): 23-33.
11 胡玉可,夏维,胡笑旋,等.基于循环神经网络的船舶航迹预测[J]. 系统工程与电子技术, 2020, 42(4): 871-877.
Hu Yu-ke, Xia Wei, Hu Xiao-xuan, et al. Vessel trajectory prediction based on recurrent neural network[J]. Systems Engineering and Electronics, 2020,42(4):871-877.
12 Duc-Duy N, Chan L V, Muhammad I A. Vessel trajectory prediction using sequence-to-sequence models over spatial grid[C]∥The 12th ACM International Conference, New Zealand, 2018: 258-261.
13 游兰,韩雪薇,何正伟,等.基于改进Seq2Seq的短时AIS轨迹序列预测模型[J]. 计算机科学, 2020, 47(9): 169-174.
You Lan, Han Xue-wei, He Zheng-wei, et al. Improved sequence-to-sequence model for short-term vessel trajectory prediction using AIS data streams[J]. Computer Science, 2020, 47(9): 169-174.
14 夏永泉,黄海鹏,王兵,等.一种基于改进的无监督深度学习自编码方法[J]. 科技通报, 2018, 34(7):183-187.
Xia Yong-quan, Huang Hai-peng, Wang Bing, et al. Self-encoding method based on improved unsupervised deep learning[J]. Bulletin of Science and Technology, 2018, 34(7): 183-187.
15 Sutskever I, Vinyals O, Le Q V. Sequence to Sequence Learning with Neural Networks[C/OL]∥[2021-03-15].
16 徐谦,李颖,王刚.基于深度学习图像语义分割的机器人环境感知[J].吉林大学学报:工学版, 2019, 49(1): 248-260.
Xu Qian, Li Ying, Wang Gang. Robotic environment sensing based on semantic segmentation by deep learning[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(1): 248-260.
17 Sepp Hochreiter, Technische Universität München, Fakultät für Informatik, et al. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
18 刘畅. 船舶自动识别系统(AIS)关键技术研究[D]. 大连: 大连海事大学通信与信息系统, 2013.
Liu Chang. Study of key technology of automatic identification system(AIS)[D].Dalian: Communication and Information Systems, Dalian Maritime University, 2013.
19 伊恩,约书亚,亚伦.深度学习[M].北京: 人民邮电出版社, 2017.
20 赵宏伟,刘晓涵,张媛,等.基于关键点注意力和通道注意力的服装分类算法[J]. 吉林大学学报:工学版, 2020, 50(5): 1765-1770.
Zhao Hong-wei, Liu Xiao-han, Zhang Yuan, et al. Clothing classification algorithm based on landmark attention and channel attention[J].Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1765-1770.
21 冯荣强,赵磊,杨勇,等.计及电价和Attention机制的LSTM短期负荷预测模型[J].科技通报, 2020, 36(11): 57-62, 68.
Feng Rong-qiang, Zhao Lei, Yang Yong, et al. LSTM-Short-term load forecasting model considering electricity price and attention mechanism[J]. Bulletin of Science and Technology, 2020, 36(11): 57-62, 68.
[1] Xiao-ying LI,Ming YANG,Rui QUAN,Bao-hua TAN. Unbalanced text classification method based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1889-1895.
[2] Xuan-jing SHEN,Xue-feng ZHANG,Yu WANG,Yu-bo JIN. Multi⁃focus image fusion algorithm based on pixel⁃level convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1857-1864.
[3] Ming-hua GAO,Can YANG. Traffic target detection method based on improved convolution neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1353-1361.
[4] Ji-hong OUYANG,Ze-qi GUO,Si-guang LIU. Dual⁃branch hybrid attention decision net for diabetic retinopathy classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 648-656.
[5] Lin SONG,Li-ping WANG,Jun WU,Li-wen GUAN,Zhi-gui LIU. Reliability analysis based on cyber⁃physical system and digital twin [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 439-449.
[6] Jie CAO,Jia-lin MA,Dai-lin HUANG,Ping YU. A fault diagnosis method based on multi Markov transition field [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 491-496.
[7] Gui-xia LIU,Zhi-yao PEI,Jia-zhi SONG. Prediction of protein-ATP binding site based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 187-194.
[8] You QU,Wen-hui LI. Single-stage rotated object detection network based on anchor transformation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 162-173.
[9] Jie ZHANG,Wen JING,Fu CHEN. Vulnerability detection of instant messaging network protocol based on passive clustering algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2253-2258.
[10] Li-li DONG,Dan YANG,Xiang ZHANG. Large⁃scale semantic text overlapping region retrieval based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1817-1822.
[11] Li-sheng JIN,Bai-cang GUO,Fang-rong WANG,Jian SHI. Dynamic multiple object detection algorithm for vehicle forward based on improved YOLOv3 [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1427-1436.
[12] Feng-chong LAN,Ji-wen LI,Ji-qing CHEN. DG-SLAM algorithm for dynamic scene compound deep learning and parallel computing [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1437-1446.
[13] Jin-qing LI,Jian ZHOU,Xiao-qiang DI. Learning optical image encryption scheme based on CycleGAN [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1060-1066.
[14] Zhe-ming YUAN,Hong-jie YUAN,Yu-xuan YAN,Qian LI,Shuang-qing LIU,Si-qiao TAN. Automatic recognition and classification of field insects based on lightweight deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1131-1139.
[15] Bo PENG,Yuan-yuan ZHANG,Yu-ting WANG,Ju TANG,Ji-ming XIE. Automatic traffic state recognition from videos based on auto⁃encoder and classifiers [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 886-892.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!