Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (3): 653-662.doi: 10.13229/j.cnki.jdxbgxb20221273

Previous Articles    

Wheel odometry error prediction model based on transformer

Ke HE(),Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO   

  1. College of Automotive Engineering,Jilin University,Changchun 130022,China
  • Received:2022-09-29 Online:2023-03-01 Published:2023-03-29

Abstract:

To address the problem of unpredictable and variable errors when using wheel odometry for localization, a wheel odometry error prediction model based on Transformer neural network is developed to accurately predict the odometry error that accumulates and changes as the mileage increases, and to improve the accuracy of localization using wheel odometry under GPS occlusion. First, two models were established without and with the driving condition characteristics, then they were compared with the LSTM model under various driving conditions. The experimental results show that the Transformer-based wheel odometry error prediction model can accurately predict the odometry error with higher accuracy, stability and reliability than the LSTM model under both regular driving conditions and challenging driving conditions where it is difficult to measure the odometry signal accurately. At the same time, compared with the Transformer model without considering the driving condition characteristics, the Transformer model with considering the driving condition characteristics improve the performance in all evaluation indexes, which proves that considering the driving condition characteristics can effectively improve the prediction performance of the model.

Key words: vehicle engineering, autonomous driving, localization, wheel odometry, deep learning, Transformer model

CLC Number: 

  • U469.79

Fig.1

Role of the wheel odometry error prediction model in the localization system"

Fig.2

Transformer model architecture"

Table 1

Selected characteristics"

特征序号描述特征序号描述
1里程17急刹车
2环岛18左右急转弯
3山路19换挡
4乡村道路20打滑
5高速公路21连续左右转
6市中心22短时间加速度快速变化
7市区内23U-turn
8蜿蜒道路24倒车
9住宅小区25漂移
10山谷26碰撞
1127Z字形行驶
12土路28近似直线的行驶
13碎石路29静止
14潮湿道路30停车
15泥路31里程误差
16坑洞

Fig.3

Two types of Transformer model structures"

Table 2

IO-VNB data subsets used for the Transformer model training"

序号IO-VNB数据子集序号IO-VNB数据子集
1V-Vta1a14V-Vtb1
2V-Vta215V-Vtb2
3V-Vta816V-Vtb3
4V-Vta1017V-Vtb5
5V-Vta1618V-Vw4
6V-Vta1719V-Vw5
7V-Vta2020V-Vw14b
8V-Vta2121V-Vw14c
9V-Vta2222V-Vfa01
10V-Vta2723V-Vfa02
11V-Vta2824V-Vfb01a
12V-Vta2925V-Vfb01b
13V-Vta3026V-Vfb02b

Table 3

Transformer model training parameters"

参数IO-VNB数据子集
编码器和解码器个数N6
子层以及嵌入层的输出维度dmodel64
全连接层中间层层数dff32
注意力头数h8
批量大小32
训练次数Epochs100
时间步长(滑动窗口)/s11
随机失活比例Dropout0
激活函数ReLU

Table 4

IO-VNB data subsets for performance evaluation"

场景IO-VNB数据子集行驶总时间/min行驶距离/km速度/(km·h-1加速度/(9.8 m·s-2
高速公路V-Vw121.752.6482.6~97.4-0.06~0.07
加速度快速变化V-Vfb02e1.61.5237.4~73.9-0.24~0.19
V-Vta121.11.2744.7~85.3-0.44~0.13
急刹车V-Vw16b2.01.991.3~86.3-0.75~0.29
V-Vw170.50.5431.5~72.7-0.8~0.19
V-Vta90.40.4348.9~87.7-0.6~0.14
湿/泥泞路面V-Vtb81.21.3560.9~76.5-0.35~0.08
V-Vtb110.70.845.1~75.3-0.05~0.12
V-Vtb132.10.997.5~43.3-0.31~0.22

Table 5

Transformer parameter adjustment process"

NdmodeldffhDropoutmaxminμσ
基准66432801.990.030.550.48
A66432402.110.030.630.50
664321602.060.020.600.49
B46432802.020.040.620.47
86432802.100.040.730.53
C63232802.000.030.660.49
612832801.970.030.540.46
D66416802.020.040.740.50
66464801.980.020.580.46
E6643280.11.990.030.830.52
6643280.22.000.070.820.46

Table 6

Test results on the motorway scenario"

指标LSTM模型误差/mTransformer模型误差
不考虑工况特征提升/%考虑工况特征提升/%
max0.680.70-30.5618
min0.250.10600.0580
μ0.460.34260.3035
σ0.080.12-500.15-87.5

Fig.4

Test results on the motorway scenario"

Table 7

Test results on the driving condition with quick changes in vehicle's acceleration"

指标LSTM模型误差/mTransformer模型误差/m
不考虑工况特征提升/%考虑工况特征提升/%
max2.952.00321.9933
min0.540.08850.0591
μ1.401.01280.7249
σ0.790.52340.5530

Fig.5

Test results on the driving condition with quick changes in vehicle's acceleration"

Table 8

Test results on the hard brake scenario"

指标LSTM模型误差/mTransformer模型误差
不考虑工况特征提升/%考虑工况特征提升/%
max2.931.97331.6245
min0.100.03700.0370
μ1.220.70430.2381
σ0.840.52380.2373

Fig.6

Test results on the hard brake scenario"

Table 9

Test results on the wet/muddy road conditions"

指标LSTM模型误差/mTransformer模型误差/m
不考虑工况特征提升/%考虑工况特征提升/%
max2.331.99151.9317
min0.200.2000.0385
μ0.660.6430.5812
σ0.520.44150.4317

Fig.7

Test results on the wet/muddy road conditions"

Fig.8

Comparison of the original odometry output error and the error after compensation using the error prediction model"

1 高振海,孙天骏,何磊. 汽车纵向自动驾驶的因果推理型决策[J]. 吉林大学学报: 工学版, 2019, 49(5): 1392-1404.
Gao Zhen-hai, Sun Tian-jun, He Lei. Causal reasoning decision⁃making for vehicle longitudinal automatic driving[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1392-1404.
2 Jo K, Kim J, Kim D, et al. Development of autonomous car—part I: distributed system architecture and development process[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 7131-7140.
3 Lu W, Rodríguez F S A, Seignez E, et al. Lane marking-based vehicle localization using low-cost GPS and open source map[J]. Unmanned Systems, 2015, 3(4): 239-251.
4 Xu L H, Hu S G, Luo Q. A new lane departure warning algorithm considering the driver's behavior characteristics[J]. Mathematical Problems in Engineering, 2015(1): No.412126.
5 Levinson J, Montemerlo M, Thrun S. Map-based precision vehicle localization in urban environments[C]∥Robotics: Science and Systems, Atlanta, Georgia, USA, 2007: No.16.
6 秦晓辉, 王哲文, 庞涛, 等. 基于车辆模型紧耦合的封闭园区车辆定位方法[J]. 汽车工程,2021,43(9): 1328-1335.
Qin Xiao-hui, Wang Zhe-wen, Pang Tao, et al. Vehicle positioning method based on tight coupling of vehicle model in enclosed environments[J]. Automotive Engineering, 2021, 43(9): 1328-1335.
7 Kubo N, Suzuki T. Performance improvement of RTK-GNSS with IMU and vehicle speed sensors in an urban environment[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2016, 99(1): 217-224.
8 何永明, 陈世升, 冯佳, 等. 基于高精地图的超高速公路虚拟轨道系统[J/OL]. [2022-02-15].
9 Funk N, Alatur N, Deuber R, et al. Autonomous electric race car design[J/OL]. [2022-08-26].
10 Schwesinger U, Bürki M, Timpner J, et al. Automated valet parking and charging for e-mobility[C]∥2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 2016: 157-164.
11 Schanz A, Spieker A, Kuhnert K D. Autonomous parking in subterranean garages-a look at the position estimation[C]∥IEEE IV2003 Intelligent Vehicles Symposium, OH, USA, 2003: 253-258.
12 Malleswaran M, Vaidehi V, Manjula S, et al. Performance comparison of HONNs and FFNNs in GPS and INS integration for vehicular navigation[C]∥2011 International Conference on Recent Trends in Information Technology (ICRTIT), Chennai, India, 2011: 223-228.
13 Malleswaran M, Vaidehi V, Saravanaselvan A, et al. Performance analysis of various artificial intelligent neural networks for GPS/INS integration[J]. Applied Artificial Intelligence, 2013, 27(5): 367-407.
14 Dai H, Bian H, Wang R, et al. An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network[J]. Defence Technology, 2020, 16(2): 334-340.
15 Fang W, Jiang J, Lu S, et al. A LSTM algorithm estimating pseudo measurements for aiding INS during GNSS signal outages[J]. Remote Sensing, 2020, 12(2): No.256.
16 Onyekpe U, Palade V, Kanarachos S, et al. Learning uncertainties in wheel odometry for vehicular localisation in GNSS deprived environments[C]∥2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 2020: 741-746.
17 Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J/OL]. [2022-09-28].
18 Onyekpe U, Kanarachos S, Palade V, et al. Vehicular localisation at high and low estimation rates during gnss outages: a deep learning approach[J]. Deep Learning Applications, 2021,2: 237-256.
19 Onyekpe U, Palade V, Kanarachos S, et al. IO-VNBD: inertial and odometry benchmark dataset for ground vehicle positioning[J]. Data in Brief, 2021, 35: No.106885.
20 Onyekpe U, Palade V, Kanarachos S. Learning to localise automated vehicles in challenging environments using Inertial Navigation Systems (INS)[J]. Applied Sciences, 2021, 11(3): No.1270.
[1] Deng-feng WANG,Hong-li CHEN,Jing-xin NA,Xin CHEN. Failure comparison of single and double lap joints after high temperature aging [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 346-354.
[2] Pei ZHANG,Zhi-wei WANG,Chang-qing DU,Fu-wu YAN,Chi-hua LU. Oxygen excess ratio control method of proton exchange membrane fuel cell air system for vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1996-2003.
[3] Ke-yong WANG,Da-tong BAO,Su ZHOU. Data-driven online adaptive diagnosis algorithm towards vehicle fuel cell fault diagnosis [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2107-2118.
[4] Qi-ming CAO,Hai-tao MIN,Wei-yi SUN,Yuan-bin YU,Jun-yu JIANG. Hydrothermal characteristics of proton exchange membrane fuel cell start⁃up at low temperature [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2139-2146.
[5] Hai-lin KUI,Ze-zhao WANG,Jia-zhen ZHANG,Yang LIU. Transmission ratio and energy management strategy of fuel cell vehicle based on AVL⁃Cruise [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2119-2129.
[6] Yan LIU,Tian-wei DING,Yu-peng WANG,Jing DU,Hong-hui ZHAO. Thermal management strategy of fuel cell engine based on adaptive control strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2168-2174.
[7] Jin-wu GAO,Zhi-huan JIA,Xiang-yang WANG,Hao XING. Degradation trend prediction of proton exchange membrane fuel cell based on PSO⁃LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2192-2202.
[8] Cheng LI,Hao JING,Guang-di HU,Xiao-dong LIU,Biao FENG. High⁃order sliding mode observer for proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2203-2212.
[9] Xun-cheng CHI,Zhong-jun HOU,Wei WEI,Zeng-gang XIA,Lin-lin ZHUANG,Rong GUO. Review of model⁃based anode gas concentration estimation techniques of proton exchange membrane fuel cell system [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 1957-1970.
[10] Yao-wang PEI,Feng-xiang CHEN,Zhe HU,Shuang ZHAI,Feng-lai PEI,Wei-dong ZHANG,Jie-ran JIAO. Temperature control of proton exchange membrane fuel cell thermal management system based on adaptive LQR control [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2014-2024.
[11] Guang-di HU,Hao JING,Cheng LI,Biao FENG,Xiao-dong LIU. Multi⁃objective sliding mode control based on high⁃order fuel cell model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2182-2191.
[12] Feng-xiang CHEN,Qi WU,Yuan-song LI,Tian-de MO,Yu LI,Li-ping HUANG,Jian-hong SU,Wei-dong ZHANG. Matching,simulation and optimization for 2.5 ton fuel cell/battery hybrid forklift [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2044-2054.
[13] Xiao-hua WU,Zhong-wei YU,Zhang-ling ZHU,Xin-mei GAO. Fuzzy energy management strategy of fuel cell buses [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(9): 2077-2084.
[14] Qing GAO,Hao-dong WANG,Yu-bin LIU,Shi JIN,Yu CHEN. Experimental analysis on spray mode of power battery emergency cooling [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1733-1740.
[15] Kui-yang WANG,Ren HE. Recognition method of braking intention based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(8): 1770-1776.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!