Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (5): 1458-1464.doi: 10.13229/j.cnki.jdxbgxb.20220137

Previous Articles    

Real⁃time tracking method of underground moving target based on weighted centroid positioning

Nan ZHANG1(),Jian-hua SHI1,Ji YI2,Ping WANG1   

  1. 1.College of Mechanical and Electrical Engineering,Shanxi Datong University,Datong 037003,China
    2.College of Coal Engineering,Shanxi Datong University,Datong 037003,China
  • Received:2022-02-16 Online:2023-05-01 Published:2023-05-25

Abstract:

In order to ensure the personal safety of underground operators, a real-time tracking method of underground moving target based on weighted centroid positioning of wireless sensor network is proposed. The location and number of sensors in the mine is determined, and communication with neighbor nodes is established; The node closest to the target is selected to form a positioning edge. The weighted centroid positioning algorithm is used to give the node weight. The concept of virtual node is introduced to calculate the virtual node position and estimate the specific location of the moving target. The autonomous decision-making approach is adopted to determine the node transition states, and a tracking process is established based on the states to achieve real-time tracking of the target.. The results show that the tracking loss rate of the proposed method is always less than 0.02%, the error is small, and the tracking efficiency is high.

Key words: wireless sensor network, weighted centroid positioning, underground moving target, real-time tracking, autonomous decision making

CLC Number: 

  • TP242

Fig.1

Schematic diagram of WSN network structure"

Table 1

Specific network configuration parameters"

参数类型参数取值
无线传感网络范围/(m×m)300×300
通信半径/m50
感应半径/m25
节点能量/J6
计算能耗/μJ20
数据传输能耗/μJ500
节点阈值能量/mJ1.5

Fig.2

Average positioning error test results of different algorithms"

Fig.3

Moving target tracking trajectory of different algorithms"

Fig.4

comparison results of energy consumption of wireless sensor networks with different algorithms"

Fig.5

Comparison of target tracking loss rate of different algorithms"

1 赵文杰, 汤新民, 黄忠涛, 等. 基于改进IMM算法的机场移动目标轨迹跟踪与预测[J]. 武汉理工大学学报: 交通科学与工程版, 2020, 44(3): 468-473, 479.
Zhao Wen-jie, Tang Xin-min, Huang Zhong-tao, et al. Track tracking and prediction of airport moving target based on improved IMM algorithm[J]. Journal of Wuhan University of Technology(Traffic Science and Engineering Edition), 2020, 44(3): 468-473, 479.
2 徐义晗. 基于无迹卡尔曼滤波的移动目标跟踪算法[J]. 火力与指挥控制, 2020, 45(12): 149-152.
Xu Yi-han. Unscented KF-based mobile target tracking algorithm[J]. Fire Control & Command Control, 2020, 45(12): 149-152.
3 刘子龙, 王晨. 基于双模态输入的孪生网络目标跟踪算法[J]. 计算机应用研究, 2021, 38(12): 3796-3800.
Liu Zi-long, Wang Chen. Target tracking algorithm in Siamese network based on bimodal input[J]. Application Research of Computers, 2021, 38(12): 3796-3800.
4 国强, 崔玉强, 王勇. 无线传感器网络中基于动态簇的节点调度算法[J]. 吉林大学学报: 工学版, 2022, 52(6): 1466-1476.
Guo Qiang, Cui Yu-qiang, Wang Yong. Dynamic cluster-based node scheduling algorithm in wireless sensor networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1466-1476.
5 Lu M, Yi J, Wan X, et al. Target tracking in time-division-multifrequency-based passive radar[J]. IEEE Sensors Journal, 2020, 6(9): 4382-4394.
6 陈丹, 姚伯羽. 运动模型引导的自适应核相关目标跟踪方法[J]. 电子学报, 2021, 49(3): 550-558.
Chen Dan, Yao Bo-yu. Adaptive response kernel correlation target tracking method guided by motion model[J]. Acta Electronica Sinica, 2021, 49(3): 550-558.
7 Taguchi S, Kidono K. Exclusive association sampling to improve bayesian multi-target tracking[J]. IEEE Access, 2020, 8(25): 193116-193127.
8 余汉蓉, 林彬, 俞增林. 结合SAMF和视觉显著性的目标跟踪算法[J]. 电光与控制, 2021, 28(1): 15-18, 32.
Yu Han-rong, Lin Bin, Yu Zeng-lin. An object tracking algorithm combining SAMF with visual saliency[J]. Electronics Optics & Control, 2021, 28(1): 15-18, 32.
9 尹莉莙, 蒋峥, 刘斌. 一种检测区域动态更新的目标跟踪算法[J]. 计算机仿真, 2021, 38(8): 333-338, 429.
Yin Li-jun, Jiang Zheng, Liu Bin. A target tracking algorithm for dynamic update of detecting regions[J]. Computer Simulation, 2021, 38(8): 333-338, 429.
10 Luo J, Wang Z, Chen Y, et al. An improved unscented particle filter approach for multi-sensor fusion target tracking[J]. Sensors, 2020, 20(23): 20236842.
11 张楠, 霍羽. 煤矿环境下人员移动无线传感器节点协同定位算法[J]. 吉林大学学报: 工学版, 2022, 52(5): 1168-1173.
Zhang Nan, Huo Yu. Cooperative location algorithm of wireless sensor nodes for personnel movement in coal mine environment[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(5): 1168-1173.
12 张红颖, 贺鹏艺, 王汇三. 基于改进SiamFC的实时目标跟踪算法[J]. 激光与光电子学进展, 2021, 58(6): 308-316.
Zhang Hong-ying, He Peng-yi, Wang Hui-san. A real-time target-tracking algorithm based on improved siamFC[J]. Laser & Optoelectronics Progress, 2021, 58(6): 308-316.
13 Li S, Feng X, Deng Z, et al. Minimum error entropy based multiple model estimation for multisensor hybrid uncertain target tracking systems[J]. IET Signal Processing, 2020, 14(3): 1049-1053.
14 刘云, 钱美伊, 李辉, 等. 特征融合与训练加速的高效目标跟踪[J]. 计算机工程与应用, 2021, 57(10): 101-109.
Liu Yun, Qian Mei-yi, Li Hui, et al. Efficient object tracking with feature fusion and training acceleration[J]. Computer Engineering and Applications, 2021, 57(10): 101-109.
15 符磊, 顾文彬, 艾勇保, 等. 基于双孪生网络的可见光热红外目标实时鲁棒跟踪[J]. 吉林大学学报: 工学版, 2022, 52(12): 2906-2915.
Fu Lei, Gu Wen-bin, Ai Yong-bao, et al. Real-time robust tracking of visible light thermal infrared targets based on twin networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(12): 2906-2915.
16 Sxa B, Xg A, Qlh A, et al. Distributed guaranteed two-target tracking over heterogeneous sensor networks under bounded noises and adversarial attacks[J]. Information Sciences, 2020, 535(23): 187-203.
17 慕巍, 张宝宜, 王新明, 等. 适用于光电跟踪仪的高速目标跟踪控制算法[J]. 激光与红外, 2020, 50(4): 468-474.
Mu Wei, Zhang Bao-yi, Wang Xin-ming, et al. High speed target tracking control algorithm for electro-optical tracker[J]. Laser & Infrared, 2020, 50(4): 468-474.
18 Anvaripour M, Saif M, Ahmadi M. A novel approach to reliable sensor selection and target tracking in sensor networks[J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 171-182.
19 罗元, 肖航, 欧俊雄. 基于深度学习的目标跟踪技术的研究综述[J]. 半导体光电, 2020, 41(6): 757-767.
Luo Yuan, Xiao Hang, Jun-xiong Ou. Research on target tracking technology based on deep learning[J]. Semiconductor Optoelectronics, 2020, 41(6): 757-767.
20 陈富健, 谢维信. 引入抗遮挡机制的SiamVGG网络目标跟踪算法[J]. 信号处理, 2020, 36(4): 562-571.
Chen Fu-jian, Xie Wei-xin. SiamVGG network target tracking algorithm with anti-occlusion mechanism [J]. Journal of Signal Processing, 2020, 36(4): 562-571.
21 Li Z, Liao C, Yang Y, et al. High sensitivity gas pressure sensor based on multimode interferometer using hollow-core tube lattice fiber[J]. Optics Letters, 2020, 45(16): 4571-4574.
22 李松, 程咏梅, 王会宾, 等. 时间偏差校准分布式多传感器多目标跟踪算法[J].西北工业大学学报,2020, 38(4): 797-805.
Li Song, Cheng Yong-mei, Wang Hui-bin, et al. Distributed multisensor multitarget tracking algorithm with time-offset registration[J]. Journal of Northwestern Polytechnical University, 2020, 38(4): 797-805.
[1] Jun WANG,Yan-hui XU,Li LI. Data fusion privacy protection method with low energy consumption and integrity verification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1657-1665.
[2] Qiang GUO,Yu-qiang CUI,Yong WANG. Nodes scheduling algorithm based on dynamic cluster in wireless sensor network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1466-1476.
[3] Bin-bin YU,Liang HU,Ling CHI. Digital signature scheme against internal and external attack for wireless sensor networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1676-1681.
[4] LIU Zhou-zhou, PENG Han. Topology control algorithm based on node reliability in WSN [J]. 吉林大学学报(工学版), 2018, 48(2): 571-577.
[5] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[6] YU Bin-bin, WU Xin-yu, CHU Jian-feng, HU Liang. Signature protocol for wireless sensor network based on group key agreement [J]. 吉林大学学报(工学版), 2017, 47(3): 924-929.
[7] DONG Ying, ZHOU Zhan-ying, SU Zhen-zhen, XU Yang, QIAN Zhi-hong. Cross-layer MAC protocol based on routing information for WSN [J]. 吉林大学学报(工学版), 2017, 47(2): 647-654.
[8] ZHU Hai-yang, ZHANG He, MA Shao-jie. Parameter optimization of enhanced ultrasonic circumferential scanning node in WSN [J]. 吉林大学学报(工学版), 2017, 47(1): 262-267.
[9] LIU Zhou-zhou, WANG Fu-bao. Improvement of discrete shuffled frog-leaping algorithm and application in compressed sensing reconstruction [J]. 吉林大学学报(工学版), 2016, 46(4): 1261-1268.
[10] ZHANG Jing, LIU Yan-heng, ZHANG Jin-dong, SUN Geng. Cluster size adaptive adjustable strategy for wireless sensor networks [J]. 吉林大学学报(工学版), 2016, 46(3): 876-883.
[11] TENG Zhi-jun, ZHANG Fan, SONG Ming-hui. Wireless sensor network energy balance ant colony routing algorithm [J]. 吉林大学学报(工学版), 2016, 46(1): 327-332.
[12] WANG Li-ding, YUE Guo-dong, XU Zheng, LIU Chong, CHEN Yi, ZHAO Yue-xuan, WANG Tian-rao. Architecture and performance test of wireless sensor network system for distributed stress monitoring in high-speed railway track [J]. 吉林大学学报(工学版), 2015, 45(6): 1974-1979.
[13] SONG Xiao-ying, WEN Tao, GUO Quan, ZHANG Dong-qing, SHENG Gang. Unequal cluster data gathering protocol with optimal cluster size in sensor networks [J]. 吉林大学学报(工学版), 2015, 45(6): 1961-1973.
[14] LIU Kui, LIU San-yang. Mobile data collecting algorithm based on mixed sink strategy in WSNs [J]. 吉林大学学报(工学版), 2015, 45(5): 1680-1687.
[15] KUANG Zhe-jun, SHI Wei-jia, HU Liang, ZHOU Hang. Delay-tolerant mobile-sink strategy on energy saving for wireless sensor networks [J]. 吉林大学学报(工学版), 2015, 45(5): 1586-1591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!