Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (7): 1657-1665.doi: 10.13229/j.cnki.jdxbgxb20210112

Previous Articles    

Data fusion privacy protection method with low energy consumption and integrity verification

Jun WANG1,2(),Yan-hui XU1,2,Li LI1,2()   

  1. 1.College of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142,China
    2.Key Laboratory of Industrial Intelligence Technology on Chemical Process,Shenyang University of Chemical Technology,Shenyang 110142,China
  • Received:2021-02-04 Online:2022-07-01 Published:2022-08-08
  • Contact: Li LI E-mail:wj_software@hotmail.com;1074470209@qq.com

Abstract:

Aiming at the problem that data integrity and privacy protection are difficult to take into account at the same time in wireless sensor networks, a data fusion privacy protection method PPMLEC with low energy consumption and integrity verification is proposed. PPMLEC expresses the ID number of a node by the combination of cluster number and node number, transmits the ID number implicitly, calculates the disturbance value by hash function, disturbs the data collected by the node, and improves the security of the data, and verifies the integrity at the base station by constructing two fusion trees. Experimental results show that, on the premise of not increasing network energy consumption, PPMLEC reduces the traffic by about 4.7% compared with the existing integrity protection scheme based on distributed authentication and by about 9.5% compared with DCSA scheme.

Key words: computer application, wireless sensor network, ID transmission, integrity verification, privacy protection, data disturbance, data fusion

CLC Number: 

  • TP393

Fig.1

ID representation"

Table 1

ID representation"

IDID'(簇号+节点号)
10001 0111
20110 0111
30011 0111
40001 0001
50001 0010
60001 0100
70010 0001
80100 0111
90010 0010
100011 0001
110011 0010
120011 0100
130100 0001
140100 0010
150100 0100

Fig.2

Intracluster fusion"

Fig.3

Inter-cluster fusion"

Fig.4

Network topology diagram"

Fig.5

Communication cost comparison"

Fig.6

Bandwidth energy consumption comparison"

Fig.7

Comparison of storage energy consumption"

1 于斌斌,武欣雨,初剑峰,等.基于群密钥协商的无线传感器网络签名协议[J]. 吉林大学学报:工学版, 2017,47(3):924-929.
Yu Bin-bin, Wu Xin-yu, Chu Jian-feng, et al. Wireless sensor network signature protocol based on group key agreement[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(3):924-929.
2 范时平,何超杰. 基于NARX神经网络的分簇数据融合算法[J]. 计算机工程与设, 2018, 39(4): 938-942.
Fan Shi-ping, He Chao-jie. Clustering data fusion algorithm based on NARX neural network [J]. Computer Engineering and Design, 2018, 39(4): 938-942.
3 许建,杨庚,陈正宇,等. WSN数据融合中的隐私保护技术研究[J]. 计算机工程, 2012, 38(15): 134-138.
Xu Jian, Yang Geng, Chen Zheng-yu, et al. Research on privacy protection technology in WSN data fusion[J]. Computer Engineering, 2012, 38(15): 134-138.
4 Gao F, Zhu W. A dual-head cluster based secure aggregation scheme for sensor networks[C]∥Proceedings of the International Conference on Network and Parallel Computing, Shanghai, China, 2008: 103-110.
5 杨文文,马春光,黄予洛. 基于分布式认证的完整性保护数据融合方法[J].计算机应用, 2014, 34(3): 714-719, 732.
Yang Wen-wen, Ma Chun-guang, Huang Yu-luo. Integrity protection data fusion scheme based on distributed authentication[J]. Computer Applications, 2014, 34(3): 714-719, 732.
6 He Wen-bo, Nguyen Hoang, Liu Xue, et al. PDA:privacy- preserving data aggregation in wireless sensor networks[C]∥Proceedings of 26th IEEE International Conference on Computer Communications(INFOCOMM), Anchorage, USA, 2007: 2045-2053.
7 He Wen-bo, Nguyen Hoang, Liu Xue, et al. iPDA:an integrity-protecting private data aggregation scheme for wireless sensor networks[C]∥Proceedings of IEEE Military Communications Conference, San Diego, USA, 2008: 1-7.
8 丁晓娇. 可保护数据隐私性和完整性的安全数据融合算法研究[D]. 开封: 河南大学计算机科学与技术学院, 2015.
Ding Xiao-jiao. Research on secure data fusion algorithm that protects data privacy and integrity[D]. Kaifeng: School of Computer Science and Technology, Henan University, 2015.
9 贾宗璞,王冠琼,彭维平,等.基于复数域的高效完整性保护数据融合算法[J]. 计算机应用与软件, 2017, 34(4): 70-74, 148.
Jia Zong-pu, Wang Guan-qiong, Peng Wei-ping, et al. High efficiency integrity protection data fusion algorithm based on complex domain[J]. Computer Applications and Software, 2017, 34(4): 70-74, 148.
10 李敏. 无线传感器网络数据融合完整性认证机制[D].大连:大连理工大学计算机科学与技术学院,2013.
Li Min. Authentication mechanism of data fusion integrity in wireless sensor networks[D]. Dalian: School of Computer Science and Technology, Dalian University of Technology, 2013.
11 梁学利. 无线传感器网络中数据融合隐私保护方法研究[D]. 杭州: 浙江工业大学计算机科学与技术学院, 2015.
Liang Xue-li. Research on privacy protection method of data fusion in wireless sensor networks[D]. Hangzhou: College of Computer Science and Technology, Zhejiang University of Technology, 2015.
12 鄂旭,杨明婧,励建荣,等. 能量均衡的数据融合隐私保护算法研究[J].计算机工程, 2016, 42(4): 126-130.
Xu E, Yang Ming-jing, Li Jian-rong, et al. Research on data fusion privacy protection algorithm for energy balance [J]. Computer Engineering, 2016, 42(4): 126-130.
13 邵莉莉. 无线传感器网络中基于同态加密的安全数据融合技术研究[D]. 合肥: 安徽大学计算机科学与技术学院,2017.
Shao Li-li. Research on secure data fusion technology based on homomorphic encryption in wireless sensor networks[D]. Hefei: School of Computer Science and Technology, Anhui University, 2017.
14 李伟. 面向完整性检测的WSN数据融合隐私保护算法研究[D]. 南京: 南京邮电大学计算机科学与技术学院, 2014.
Li Wei. Research on privacy protection algorithm of wsn data fusion for integrity detection[D]. Nanjing: School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, 2014.
15 赵小敏,梁学利,蒋双双,等.安全的WSN数据融合隐私保护方法设计[J]. 通信学报,2014,35(11):154-161.
Zhao Xiao-min, Liang Xue-li, Jiang Shuang-shuang, et al. Design of a secure PRIVACY protection scheme for WSN data fusion [J]. Communications, 2014, 35(11): 154-161.
16 吉佳,温巧燕,张华. 无线传感器网络中基于分簇的数据聚合机制[J]. 传感器与微系统,2015,34(1):17-20.
Ji jia, Wen Qiao-yan, Zhang Hua. Clustering based data aggregation mechanism in wireless sensor networks[J]. Sensors and Microsystems, 2015, 34(1): 17-20.
17 于斌斌,胡亮,迟令.可抵抗内外部攻击的无线传感器网络数字签名方案[J]. 吉林大学学报: 工学版, 2019, 49(5):1676-1681.
Yu Bin-bin, Hu Liang, Chi Ling. A digital signature scheme for wireless sensor networks resisting internal and external attacks[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1676-1681.
[1] Feng-feng ZHOU,Yi-chi ZHANG. Unsupervised feature engineering algorithm BioSAE based on sparse autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(7): 1645-1656.
[2] Qiang GUO,Yu-qiang CUI,Yong WANG. Nodes scheduling algorithm based on dynamic cluster in wireless sensor network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1466-1476.
[3] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427.
[4] Wen-jun WANG,Yin-feng YU. Automatic completion algorithm for missing links in nowledge graph considering data sparsity [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1428-1433.
[5] Xue-yun CHEN,Xue-yu BEI,Qu YAO,Xin JIN. Pedestrian segmentation and detection in multi-scene based on G-UNet [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 925-933.
[6] Shi-min FANG. Multiple source data selective integration algorithm based on frequent pattern tree [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 885-890.
[7] Da-xiang LI,Meng-si CHEN,Ying LIU. Spontaneous micro-expression recognition based on STA-LSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 897-909.
[8] Ming LIU,Yu-hang YANG,Song-lin ZOU,Zhi-cheng XIAO,Yong-gang ZHANG. Application of enhanced edge detection image algorithm in multi-book recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 891-896.
[9] Xiao-hui WEI,Yan-wei MIAO,Xing-wang WANG. Rhombus sketch: adaptive and more accurate sketch for streaming data [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(4): 874-884.
[10] Xue WANG,Zhan-shan LI,Ying-da LYU. Medical image segmentation based on multi⁃scale context⁃aware and semantic adaptor [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 640-647.
[11] Ji-hong OUYANG,Ze-qi GUO,Si-guang LIU. Dual⁃branch hybrid attention decision net for diabetic retinopathy classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 648-656.
[12] Lin MAO,Feng-zhi REN,Da-wei YANG,Ru-bo ZHANG. Two⁃way feature pyramid network for panoptic segmentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 657-665.
[13] Xue-zhi WANG,Qing-liang LI,Wen-hui LI. Spatio⁃temporal model of soil moisture prediction integrated with transfer learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 675-683.
[14] Su-ming KANG,Ye-e ZHANG. Hadoop⁃based local timing link prediction algorithm across social networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 626-632.
[15] You QU,Wen-hui LI. Single-stage rotated object detection network based on anchor transformation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 162-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!