Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (3): 620-630.doi: 10.13229/j.cnki.jdxbgxb.20220542

Previous Articles    

Intelligent vehicle trajectory tracking control based on adjusting step size of control horizon

Xian-yi XIE1,2(),Yu-han WANG3,Li-sheng JIN1(),Xin ZHAO1,Bai-cang GUO1,Ya-ping LIAO4,Bin ZHOU5,Ke-qiang LI2   

  1. 1.School of Vehicle and Energy,Yanshan University,Qinhuangdao 066004,China
    2.State Key Laboratory Automotive Safety and Energy,Tsinghua University,Beijing 100084,China
    3.Electrical and Electronics,General R&D Institute of China FAW Co. ,Ltd. ,Changchun 130011,China
    4.Key Laboratory of Unmanned Transportation Technology for Special Vehicles,Ministry of Industry and Information Technology,Beihang University,Beijing 100191,China
    5.National Key Laboratory of Vehicle-Road Integrated Intelligent Transportation,Beihang University,Beijing 100191,China
  • Received:2022-04-27 Online:2024-03-01 Published:2024-04-18
  • Contact: Li-sheng JIN E-mail:xiexianyi123@126.com;jinls@ysu.edu.cn

Abstract:

In order to solve the intelligent vehicle trajectory tracking controller based on model predictive control with long processing time and low real-time performance, a model predictive trajectory tracking control method based on variable step size in the control time domain was proposed using matrix-blocking strategy. The matrix-blocking method was used to change the control time domain step size and integrated into the quadratic programming solution process of model predictive control, and the objective function and system constraints were reconstructed to reduce the number of variables to be solved in the optimal control sequence during the solution process, and the calculation time are also be reduced. Based on Simulink and CarSim co-simulation platform, the proposed method was compared with the traditional model predictive control method. The results demonstrate that compared with the traditional model predictive control method, the proposed method not only reduces the average calculation time by 24.39% and the maximum single calculation time by 45.05%, but also ensuring the trajectory tracking accuracy. The performance of the controller using the dense before sparse block matrix is better than the average block matrix.

Key words: vehicle engineering, intelligent vehicle, adjusting the step size of control horizon, model predictive control, trajectory tracking, matrix blocking

CLC Number: 

  • U461.6

Fig.1

Vehicle dynamic model"

Table 1

Vehicle parameters in simulation"

参数数值
整车质量/kg1704.7
横摆转动惯量/(kg·m23048.1
侧倾转动惯量/(kg·m2744
簧载质量转动惯量积/(kg·m221.09
前轴到质心的距离/m1.035
后轴到质心的距离/m1.655
前、后轴轮距/m1.535
前轴侧倾刚度/(N·m·rad-12 328
后轴侧倾刚度/(N·m·rad-12 653
前轴侧倾阻尼/(N·m·s·rad-147 298
后轴侧倾阻尼/(N·m·s·rad-137 311
前轮侧偏刚度(N·rad-131 106.98
后轮侧偏刚度(N·rad-129 584.56
车轮转动惯量/(kg·m20.9
车轮滚动半径/m0.313

Fig.2

Simulation results of controller based on IB matrix I1"

Table 2

Comparison of calculation time between model predictive controller based on IB matrix I1 and traditional model predictive controller"

参数基于分块矩阵 I1的MPC传统MPC
平均计算时间/s0.00310.0041
单次最大计算时间/s0.00610.0111

Fig.3

Comparison of simulation results of controllers based on IB matrix I1 and I3"

Table 3

Comparison of calculation time for model predictive controllers based on IB matrix I1 and I3"

参数基于分块矩阵 I1的MPC基于分块矩阵 I3的MPC
平均计算时间/s0.00310.0032
单次最大计算时间/s0.00610.0062

Fig.4

Comparison of simulation results"

Table 4

Comparison of controller calculation time"

参数基于分块矩阵 I1的MPC传统MPCNc=4)
平均计算时间/s0.003 110.003 34
单次最大计算时间/s0.006 10.006 8
1 李克强. 智能电动汽车的感知、决策与控制关键基础问题及对策研究[J]. 科技导报, 2017, 35(14): 85-88.
Li Ke-qiang. Key topics and measures for perception, decision-making and control of intelligent electric vehicles[J]. Science and Technology Review, 2017, 35(14): 85-88.
2 赵熙俊, 陈慧岩. 智能车辆路径跟踪横向控制方法的研究[J]. 汽车工程, 2011, 33(5): 382-387.
Zhao Xi-jun, Chen Hui-yan. A study on lateral control method for the path tracking of intelligent vehicles[J]. Automotive Engineering,2011, 33(5): 382-387.
3 蔡英凤, 李健, 孙晓强, 等.智能汽车路径跟踪混合控制策略研究[J]. 中国机械工程, 2020, 31(3): 289-298.
Cai Ying-feng, Li Jian, Sun Xiao-qiang, et al. Research on hybrid control strategy for intelligent vehicle path tracking[J]. China Mechanical Engineering, 2020, 31(3): 289-298.
4 Al-Mayyahi A, Wang W, Birch P. Path tracking of autonomous ground vehicle based on fractional order PID controller optimized by PSO[C]∥IEEE International Symposium on Applied Machine Intelligence & Informatics, Herl'any, Slovakia, 2015: 109-114.
5 郭孔辉. 预瞄跟随理论与人-车闭环系统大角度操纵运动仿真[J]. 汽车工程, 1992(1): 1-11.
Guo Kong-hui. The theory of preview following and simulation of large angle manipulation motion in a human vehicle closed-loop system[J] Automotive Engineering, 1992 (1): 1-11.
6 Wang J, Steiber J, Surampudi B. Autonomous ground vehicle control system for high-speed and safe operation[J]. International Journal of Vehicle Autonomous Systems, 2009, 7(1/2): 18-35.
7 赵熙俊, 刘海鸥, 熊光明, 等. 自动转向滑模变结构控制参数选取方法[J]. 北京理工大学学报, 2011, 31(10): 1174-1178.
Zhao Xi-jun, Liu Hai-ou, Xiong Guang-ming, et al. Method of parameter selection for automatic steering sliding mode control[J]. Transactions of Beijing Institute of Technology, 2011, 31(10):1174-1178.
8 任玥, 冀杰, 赵颖, 等. 基于最小模型误差估计的智能汽车路径跟踪控制[J]. 汽车工程, 2021, 43(4): 580-587.
Ren Yue, Ji Jie, Zhao Ying, et al. Path tracking control of intelligent vehicle based on minimal model error estimation[J]. Automotive Engineering, 2021, 43(4): 580-587.
9 张家旭, 王晨, 赵健. 基于改进人工势场法的汽车弯道超车路径规划与跟踪控制[J]. 汽车工程, 2021, 43(4): 546-552.
Zhang Jia-xu, Wang Chen, Zhao Jian. Path planning and tracking control for vehicle overtaking on curve based on modified artificial potential field method[J]. Automotive Engineering, 2021, 43(4): 546-552.
10 贺伊琳, 宋若旸, 马建. 基于强化学习DDPG的智能车辆轨迹跟踪控制[J]. 中国公路学报, 2021, 34(11): 335-348.
He Yi-lin, Song Ruo-yang, Ma Jian. Trajectory tracking control of intelligent vehicle based on ddpg method of reinforcement learning[J]. China Journal of Highway and Transport, 2021, 34(11): 335-348.
11 冀杰, 唐志荣, 吴明阳, 等. 面向车道变换的路径规划及模型预测轨迹跟踪[J]. 中国公路学报, 2018, 31(4): 172-179.
Ji Jie, Tang Zhi-rong, Wu Ming-yang, et al. Path planning and tracking for lane changing based on model predictive control[J]. China Journal of Highway and Transport, 2018, 31(4): 172-179.
12 Song X, Shao Y, Qu Z. A vehicle trajectory tracking method with a time-varying model based on the model predictive control[J]. IEEE Access, 2019, 8: 16573-16583.
13 陈龙, 邹凯, 蔡英凤, 等. 基于NMPC的智能汽车纵横向综合轨迹跟踪控制[J]. 汽车工程, 2021, 43(2): 153-161.
Chen Long, Zou Kai, Cai Ying-feng, et al. Longitudinal and Lateral Comprehensive Trajectory Tracking Control of Intelligent Vehicles Based on NMPC[J]. Automotive Engineering, 2021, 43(2): 153-161.
14 Falcone P, Borrelli F, Asgari J, et al. A model predictive control approach for combined braking and steering in autonomous vehicles[C]∥2007 Mediterranean Conference on Control & Automation, Athens, Greece, 2007: 1-6.
15 Carvalho A, Gao Y, Gray A, et al. Predictive control of an autonomous ground vehicle using an iterative linearization approach[C]∥International IEEE Conference on Intelligent Transportation Systems, Netherlands, The Hague, Netherlands, 2013: 2335-2340.
16 金立生, 谢宪毅, 司法, 等. 考虑驾驶人特性的智能驾驶路径跟踪算法[J]. 汽车工程, 2021, 43(4): 553-561.
Jin Li-sheng, Xie Xian-yi, Si Fa, et al. Intelligent driving path tracking algorithm considering driver characteristics[J]. Automotive Engineering, 2021, 43(4): 553-561.
17 许芳, 张君明, 胡云峰, 等. 智能车辆路径跟踪横纵向耦合实时预测控制器[J]. 吉林大学学报: 工学版, 2021, 51(6): 2287-2294.
Xu Fang, Zhang Jun-ming, Hu Yun-feng, et al. Lateral and longitudinal coupling real⁃time predictive controller for intelligent vehicle path tracking[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2287-2294.
18 冷姚, 赵树恩. 智能车辆横向轨迹跟踪的显式模型预测控制方法[J]. 系统仿真学报, 2021, 33(5): 1177-1187.
Leng Yao, Zhao Shu-en. Explicit model predictive control for intelligent vehicle lateral trajectory tracking[J]. Journal of System Simulation, 2021, 33(5): 1177-1187.
19 Shekhar R C, Manzie C. Optimal move blocking strategies for model predictive control[J]. Automatica, 2015, 61: 27-34.
20 许芳, 郭中一, 于树友, 等. 四轮驱动电动汽车稳定性预测控制器快速实现[J]. 控制理论与应用, 2022, 39(5): 777-787.
Xu Fang, Guo Zhong-yi, Yu Shu-you, et al. Fast implementation of stability prediction controller for four-wheel drive electric vehicle[J]. Control Theory and Applications, 2022, 39(5): 777-787.
21 Gim G, Nikravesh P E. An Analytical model of pneumatic tyres for vehicle dynamics simulations. part 1: pure slips[J]. International Journal of Vehicle Design, 1990, 11(6): 589-618.
22 Gim G, Nikravesh P E. An analytical model of pneumatic tyres for vehicle dynamic simulations. part 2: comprehensive slips[J]. International Journal of Vehicle Design, 2014, 12(1): 19-39.
23 Ricker N L. Use of quadratic programming for constrained internal model control[J]. Industrial & Engineering Chemistry Process Design and Development, 1985, 24(4): 925-936.
24 Schwickart T, Voos H, Darouach M, et al. A flexible move blocking strategy to speed up model-predictive control while retaining a high tracking performance[J/OL]. [2022-05-02].
25 Li D, Xi Y, Lin Z. An improved design of aggregation-based model predictive control[J]. Systems & Control Letters, 2013, 62(11): 1082-1089.
26 Qin S J, Badgwell T A. A survey of industrial model predictive control technology[J]. Control Engineering practice, 2003, 11(7): 733-764.
27 Cagienard R, Grieder P, Kerrigan E C, et al. Move blocking strategies in receding horizon control[J]. Journal of Process Control, 2007, 17(6): 563-570.
28 Valencia-palomo G, Pelegrinis M, Rossiter J A, et al. A move-blocking strategy to improve tracking in predictive control[C]∥Proceedings of the 2010 American Control Conference, Baltimore, USA, 2010: 6293-6298.
[1] Zhen-hai GAO,Rong-gui CAI,Tian-jun SUN,Tong YU,Hao-yuan ZHAO,Hao BAN. Data⁃filtering method for driving behavior based on vehicle shared autonomy [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 589-599.
[2] Jing-hua ZHAO,Yu-tong ZHANG,Pai CAO,Zhong-shu WANG,Xiao-ping LI,Ya-nan SUN,Fang-xi XIE. Optimal energy management on extended⁃range electric vehicle equipped with compressed natural gas engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 600-609.
[3] Wen-hang LI,Tao NI,Ding-xuan ZHAO,Ying-jie DENG,Xiao-bo SHI. Control method on hydraulic suspension systems of rescue vehicles based on model predictive feedback technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 610-619.
[4] Yi-gang WANG,Yu-peng WANG,Hao ZHANG,Si-an ZHAO. Identification and analysis of aerodynamic noise sources in the bogie area of high⁃speed trains [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 346-355.
[5] Jian-jun NIE,Jun-kai HOU,Xiao-lin XIE,Hong-zhen YAN. Design and obstacle surmounting performance analysis of a novel mobile chassis for inspection robot [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 356-364.
[6] He-yao JIANG,Yong-hai WANG,You-dong WU,Ping WANG. Coordinated lateral stability and rollover prevention control for four⁃wheel independent motor drive electric vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 540-549.
[7] Xiao-lin DENG,Fu-mo YANG,Shan-gan QIN. Comparative analysis on crashworthiness of a novel bamboo⁃like hexagonal gradient hierarchical multicellular tube [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 333-345.
[8] Tie WANG,Xu-dong LI,Cheng TIAN,Hong-wei ZHAO. Building biaxial fatigue damage model of wheel rims based on multi-axial loads projection theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 99-104.
[9] Xu-dong LI,Xin-yu WANG,Cheng TIAN,Xin-feng ZHANG,Zhi-hui NIU,Zhi-qiang ZHAO. Compiling vehicle durability load spectrum based on customer usage correlation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 66-75.
[10] Zhao-wei CHEN,Qian-hua PU. Suppression characteristics of vehicle⁃bridge coupling vibration of long⁃span cable⁃stayed bridge with resilient wheels [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2519-2532.
[11] Ping-yi LIU,Xiao-ting LI,Ruo-lin GAO,Hai-tao LI,Wen-jun WEI,Ya WANG. Design and experiment of tilt-driving mechanism for the vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2185-2192.
[12] Shu-pei ZHANG,Ming-yue XIA,Wei ZHANG,Zhao CHEN,Yi-xiang CHEN. Impact dynamic modeling and simulation for ball joint with clearance considering nonlinear stiffness [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2227-2235.
[13] Hui CHEN,Ya-jun SHAO. Measurement method of pavement surface spectrum with multi⁃sensor coupling based on inertial benchmark [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2254-2262.
[14] Xue-jin HUANG,Jin-xing ZHONG,Jing-yu LU,Ji ZHAO,Wei XIAO,Xin-mei YUAN. Electric vehicle charging load forecasting method based on user portrait [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2193-2200.
[15] Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!