Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (5): 1469-1481.doi: 10.13229/j.cnki.jdxbgxb.20220816

Previous Articles    

A mapping method using 3D orchard point cloud based on hawk-eye-inspired stereo vision and super resolution

Zi-chao ZHANG1,2(),Jian CHEN1()   

  1. 1.College of Engineering,China Agricultural University,Beijing 100083,China
    2.Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities,MNR,Shanghai 200063,China
  • Received:2022-06-28 Online:2024-05-01 Published:2024-06-11
  • Contact: Jian CHEN E-mail:zhangzc1@cau.edu.cn;jchen@cau.edu.cn

Abstract:

The binocular vision sensor suffers from the weakness of long-distance measurement and unstable perception in various outdoor environment, the application of binocular vision is widely but limitedly. Inspired by hawk eyes, by simulating the physiological structure of dual fovea and the search experience which trained by predation, the modified reference-based super resolution is employed for enhancing the binocular vision perception ability and the accuracy of target candidates. The super resolution part aims to improve the global perception ability in vision field, the reference-based super resolution part aims to enhance the specified target candidates by manual references addition. For the orchard 3D point cloud navigation map, the maximum decrease of error ratio and standard deviation is 12.2% and 2.305 under various lighting conditions. For the 3D point cloud reconstruction of fruit tree operation, the quality of point cloud is greatly improved, which can provide accurate 3D spatial information, and restore the 3D spatial information of each branch of fruit tree more completely, which meet the needs of orchard operation.

Key words: machine vision, hawk-eye-inspired sensing, super-resolution reconstruction, binocular vision, 3D point cloud of orchard

CLC Number: 

  • TP391.4

Fig.1

Pipeline of hawk-eye-inspired stereo vision using reference-based super resolution"

Fig.2

Features extracted by AlexNet"

Fig.3

Features extracted by VGG"

Fig.4

Features extracted by ResNet"

Fig.5

Aggregation process of features"

Fig.6

Features swapping based on DCN"

Fig.7

Super resolution process based on hawk-eye-inspired method"

Fig.8

Residual block with spectral normalization"

Fig.9

3D point cloud mapping results of orchard navigation task"

Table 1

Test results of scene 1"

试验组评价指标DefaultHEHEATT
1τ/%5.632.821.57
STD0.1500.4310.139
2τ/%2.236.716.09
STD1.7930.9770.495
3τ/%7.703.235.71
STD2.2300.5670.411
4τ/%11.039.125.54
STD1.8551.5331.10
5τ/%11.565.443.23
STD1.8361.0951.86
6τ/%10.196.863.86
STD2.5511.3031.366
7τ/%12.938.057.95
STD1.7051.0761.49

Table 2

Test results of scene 2"

试验组评价指标DefaultHEHEATT
1τ/%3.912.221.58
STD0.1300.270.226
2τ/%4.123.481.36
STD1.2180.8590.441
3τ/%4.111.611.58
STD0.6980.5090.493
4τ/%11.414.842.39
STD1.3801.1950.323
5τ/%16.976.364.85
STD3.2050.8200.947
6τ/%10.174.663.05
STD2.4310.9160.966
7τ/%11.624.514.03
STD2.6131.6911.991
8τ/%15.437.574.18
STD2.7971.15591.389

Fig.10

3D point cloud mapping of fruit tree 1"

Fig.11

3D point cloud mapping of fruit tree 2"

1 周云成, 许童羽, 邓寒冰, 等. 基于自监督学习的番茄植株图像深度估计方法[J]. 农业工程学报, 2019, 35(24): 173-182.
Zhou Yun-cheng, Xu Tong-yu, Deng Han-bing, et al. Method for estimating the image depth of tomato plant based on self-supervised learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 173-182.
2 Wang Y, Chao W L, Garg D, et al. Pseudo-lidar from visual depth estimation: bridging the gap in 3D object detection for autonomous driving[C]∥Proceedings of the IEEE Conference on CVPR, Long Beach, USA, 2019: 8445-8453.
3 李秋洁, 丁旭东, 邓贤. 基于激光雷达的果园行间路径提取与导航[J]. 农业机械学报, 2020, 51(S2): 344-350.
Li Qiu-jie, Ding Xu-dong, Deng Xian. Intra-row path extraction and navigation for orchards based on LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 344-350.
4 Morgan G L K, Liu J G, Yan H S. Precise subpixel disparity measurement from very narrow baseline stereo[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(9): 3424-3433.
5 于晓丹, 张远杰, 王元元. 小型无人机载大视场复眼相机光学系统设计[J]. 光子学报, 2019, 48(7): 23-30.
Yu Xiao-dan, Zhang Yuan-jie, Wang Yuan-yuan, et al. Optical design of a compound eye camera with a large-field of view for unmanned aerial vehicles[J]. Acta Photomica Sinica, 2019, 48(7): 23-30.
6 Nguyen C, Park J, Cho K. Novel descattering approach for stereo vision in dense suspended scatterer environments[J]. Sensors, 2017, 17(6): 14-25.
7 杨燕, 张国强, 姜沛沛. 结合景深估计的高斯衰减与自适应补偿去雾[J]. 光学精密工程, 2019, 27(11): 2439-2449.
Yang Yan, Zhang Guo-qiang, Jiang Pei-pei. Gaussian decay and adaptive compensation dehazing algorithm combined with scene depth estimation[J]. Optics and Precision Engineering, 2019, 27(11): 2439-2449.
8 段海滨, 张奇夫, 邓亦敏, 等. 基于仿鹰眼视觉的无人机自主空中加油[J]. 仪器仪表学报, 2014, 35(7): 1450-1458.
Duan Hai-bin, Zhang Qi-fu, Deng Yi-min, et al. Biologically eagle-eye-based autonomous aerial refueling for unmanned aerial vehicles[J]. Chinese Journal of Scientific Instrument, 2014, 35(7): 1450-1458.
9 赵国治, 段海滨. 仿鹰眼视觉技术研究进展[J]. 中国科学: 技术科学, 2017, 47(5): 514-523.
Zhao Guo-zhi, Duan Hai-bin. Progresses in biological eagle-eye vision technology[J]. Science China Technological Sciences, 2017, 47(5): 514-523.
10 Harmening W M, Nikolay P, Orlowski J, et al. Spatial contrast sensitivity and grating acuity of barn owls[J]. Journal of Vision, 2009, 9(7): 1-12.
11 Zhang Z C, Chen J, Xu X Y. Hawk-eye-inspired perception algorithm of stereo vision for orchard 3D points cloud navigation map obtaining[J]. CAAI Transactions on Intelligence Technology, 2023, 8(3): 987-1001.
12 Duan H B, Xu X B, Deng Y M, et al. Unmanned aerial vehicle recognition of maritime small-target based on biological eagle-eye vision adaptation mechanism[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3368-3382.
13 谭立东, 刘丹, 李文军. 基于蝇复眼的交通事故现场全景图像阵列仿生设计[J]. 吉林大学学报: 工学版, 2017, 47(6): 1738-1743.
Tan Li-dong, Liu dan, Li Wen-jun. Design of bionic compound eye array for traffic accident scene panorama based on fly compound eye[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1738-1743.
14 Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[C]∥Proceedings of the 28th International Conference on Neural Information Processing Systems, Bali, Indonesia, 2015: 2017-2025.
15 Almahairi A, Ballas N, Cooijmans T, et al. Dynamic capacity networks[C]∥Proceedings of the conference on ICML, New York, USA, 2016: 2549-2558.
16 Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention[C]∥Proceedings of the conference on ICML, Lille, France, 2015: 2048-2057.
17 Lu J S, Xiong C M, Parikh D, et al. Knowing when to look: adaptive attention via a visual sentinel for image captioning[C]∥Proceedings of the IEEE Conference on CVPR, Honolulu, USA, 2017: 375-383.
18 Guzman-Pando A, Chacon-Murguia M I. DeepFoveaNet: deep fovea eagle-eye bioinspired model to detect moving objects[J]. IEEE Transactions on Image Processing, 2021, 30: 7090-7100.
19 郭继昌, 吴洁, 郭春乐, 等. 基于残差连接卷积神经网络的图像超分辨率重构[J]. 吉林大学学报: 工学版, 2019, 49(5): 1726-1734.
Guo Ji-chang, Wu Jie, Guo Chun-le, et al. Image super-resolution reconstruction based on residual connection convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1726-1734.
20 Jiang Y M, Chan K, Wang X T, et al. Robust reference-based super-resolution via C2-matching[C]∥Proceedings of the IEEE Conference on CVPR, Nashville, USA, 2021: 2103-2112.
21 Xia B, Tian Y P, Hang Y C, et al. Coarse-to-fine embedded patchmatch and multi-scale dynamic aggregation for reference-based super-resolution[J]. AAAI, 2022, 3(3): 2768-2776.
22 Yan X, Zhao W B, Yuan K, et al. Towards content-independent multi-reference super-resolution: adaptive pattern matching and feature aggregation[C]∥ Proceedings of the conference on ECCV. Berlin:Springer, 2020: 52-68.
23 Lowe D. Object recognition from local scale-invariant features[C]∥Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 1999: 1150-1157.
24 Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]∥Proceedings of the Conference of ICLR, Carnifolia, USA, 2015: 14091556.
25 Gatys L, Ecker A, Bethge M. Image style transfer using convolutional neural networks[C]∥Proceedings of the IEEE Conference on CVPR, Las Vegas, USA, 2016: 2424-2423.
26 Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking[C]∥Proceedings of the Conference of ECCV. Berlin: Springer, 2016: 850-865.
27 Li B, Yan J J, Wu W, et al. High performance visual tracking with siamese region proposal network[C]∥Proceedings of the IEEE Conference on CVPR, Salt Lake, USA, 2018: 8971-8980.
28 Li B, Wu W, Wang Q, et al. Siamrpn++: evolution of siamese visual tracking with very deep networks[C]∥Proceedings of the IEEE Conference on CVPR, Long Beach, USA, 2019: 4282-4291.
29 Krizhevsky A, Sutskever I, Hinton G. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012, 60(6): 84-90.
30 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]∥Proceedings of the IEEE conference on CVPR, Las Vegas, USA, 2016: 770-778.
31 Jiang P T, Zhang C B, Hou Q B, et al. LayerCAM: exploring hierarchical class activation maps for localization[J]. IEEE Transactions on Image Processing, 2021, 30: 5875-5888.
32 Miyato T, Kataoka T, Koyama M, al et, Spectral normalization for generative adversarial networks[C]∥Proceedings of the Conference of ECCV, Munich, Germany, 2018: 1-26.
33 Hirschmuller H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 30(2): 328-341.
34 Chen J, Zhang Z C, Yi K, et al. Snake-hot-eye-assisted multi-process-fusion target tracking based on a roll-pitch semi-strapdown infrared imaging seeker[J]. Journal of Bionic Engineering, 2022, 19: 1124-1139.
35 Chen J, Zhang Z C, Zhang K, et al. UAV-borne LiDAR crop point cloud enhancement using grasshopper optimization and point cloud up-sampling network[J]. Remote Sensing, 2020, 12(19): 12193208.
36 Zhang Z C, Wang S B, Chen J, et al. A bionic dynamic path planning algorithm of the micro UAV based on the fusion of deep neural network optimization/filtering and hawk-eye vision[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(6): 3728-3740.
37 Zhao R Y, Li X T, Chen J. Eagle-inspired manipulator with adaptive grasping and collapsible mechanism and modular DOF for UAV operations[J]. Computers and Electronics in Agriculture, 2023, 215: 108344.
38 Chen T, Zhao R Y, Chen J,et al. Data-driven active disturbance rejection control of plant-protection unmanned ground vehicle prototype: a fuzzy indirect iterative learning approach[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 128: 593-605.
[1] Guan-xu LONG,Xiu-shi ZHANG,Gong-feng XIN,Tao WANG,Gan YANG. Bridge weigh-in-motion combined with machine version [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 188-197.
[2] Si-yuan LIU,Yue-qian HOU,Ying KOU,Zhen REN,Zheng-yi HU,Xue-wei ZHAO,Yu-peng GE. Flatness error measurement method based on line structured light vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3358-3366.
[3] Hao-jing BAO,Si-yuan LIU,Zhen REN,Yun-hui ZHANG,Zheng-yi HU,Yu-peng GE. Sprocket size measurement method based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2795-2806.
[4] Jing-bin LI,Yu-kun YANG,Bao-qin WEN,Za KAN,Wen SUN,Shuo YANG. Method of extraction of navigation path of post-autumn residual film recovery based on stubble detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1528-1539.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] LIN Jin-hua, WANG Yan-jie, WANG Lu, YAO Yu. Real-time surface reconstruction based global camera pose optimization [J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[7] ZHANG Fei, SHAN Zhong-de, REN Yong-xin, NIE Jun-gang, LIU Feng. Calibration of line array camera for head defect detection system on cylinder cover [J]. 吉林大学学报(工学版), 2017, 47(2): 540-545.
[8] ZHOU Xiao-dong, ZHANG Ya-chao, TAN Qing-chang, ZHANG Wei-jun. New method of cylindricity measurement based on structured light vision technology [J]. 吉林大学学报(工学版), 2017, 47(2): 524-529.
[9] LIN Dong-mei, ZHANG Ai-hua, SHEN Rong, WANG Ping, YANG Li-ming, CHEN Xiao-lei. Dual-camera synchronous acquisition method for binocular vision pulse measurement system [J]. 吉林大学学报(工学版), 2015, 45(6): 1999-2006.
[10] ZHANG Bo, WANG Wen-jun, WEE Minkooc, CHENG Bo. Detection handheld phone use by driver based on machine vision [J]. 吉林大学学报(工学版), 2015, 45(5): 1688-1695.
[11] LIU Chang-ying, CAI Wen-jing, WANG Tian-hao, LI Ji-zhi, JIA Yan-mei, SONG Yu-he. Vision inspection technology of fracture splitting notch of auto connecting rod [J]. 吉林大学学报(工学版), 2014, 44(4): 1076-1080.
[12] LIU Li-wei, MA Song-quan, MA Li-rong. Design and implementation of stereo measure system based on double digital signal processor [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 335-339.
[13] WAN Chuan, TIAN Yan-tao, LIU Shuai-shi, CHEN Hong-wei. Face tracking and facial expression recognition system based on active machine vision [J]. 吉林大学学报(工学版), 2013, 43(02): 459-465.
[14] QU Xing-tian, WANG Bin, ZHANG Lei, SHAO Kui-wei, ZHANG Liang. Image preprocessing of grinding and polishing welded seams [J]. , 2012, (06): 1421-1425.
[15] ZHAO Ding-Xuan, CUI Yu-Xin, GONG Jie, NI Tao, HOU Jing-Wei, ZHAO Ying, WANG Chao-Fei. Method of tracking and measuring moving object based on machine vision [J]. 吉林大学学报(工学版), 2010, 40(增刊): 257-0261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!