Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (4): 1528-1539.doi: 10.13229/j.cnki.jdxbgxb20200500

Previous Articles    

Method of extraction of navigation path of post-autumn residual film recovery based on stubble detection

Jing-bin LI1(),Yu-kun YANG1,Bao-qin WEN1,Za KAN1,Wen SUN2,Shuo YANG1   

  1. 1.College of Mechanical and Electrical Engineering,Shihezi University,Shihezi 832003,China
    2.College of Water Conservancy and Architecture,Shihezi University,Shihezi 832003,China
  • Received:2020-07-04 Online:2021-07-01 Published:2021-07-14

Abstract:

In view of the path planning problem in the visual navigation of the residual film recovery operation after the autumn, a method of path extraction for residual film recovery operation is proposed. The color space and texture features of the three types of images of stubble, residual film and inter-row noises were extracted to constitute a training set and test set with ratio of 8:2. With the goal of detected root, a Random Forest (RF) model is built to classify the sample images. The feature dimensions are reduced by the feature importance and correlation, the optimal model parameters of the RF model are determined by grid search. Based on the upright characteristics of the stubble, the upper and lower vertices of each stubble are detected as the feature points. All the feature points are fitted by the least square method as the navigation line. The experimental results show that the 30 feature dimensions are reduced to 16 feature dimensions by feature selection, and the processing time of a single image is reduced from 0.24 seconds to 0.16 seconds. Under the optimal parameters of the model, the accuracy of the test set is 92.5%. The classification test was selected for 450 images of 10× 20 pixels, the accuracy rate is 91.8%, the accuracy rate (sensitivity rate) of stubble detection is 90.7%. 200 field operation images with ROI area size of 100×200 pixels were selected for the navigation line fitting experiment, which included different weather, different depression angles and abnormal driving images, 171 images were successfully fitted. The stubble detection method has high stability and accuracy, and can provide reference for root crop detection and path extraction of different crops.

Key words: machine vision, residual film recycling, navigation path, feature selection, random forest, least square method

CLC Number: 

  • S24

Fig.1

Overall framework of proposed algorithm"

Fig.2

Camera installation image and schematic diagram of image acquisition process"

Fig.3

Schematic diagram of manual split sample set"

Fig.4

Color feature extraction"

Table 1

Color feature calculation formula"

特征计算公式
R分量平均值Rm=j=120i=110R(i,j)10×20
G分量平均值Gm=j=120i=110G(i,j)10×20
B分量平均值Bm=j=120i=110B(i,j)10×20
H分量平均值Hm=j=120i=110H(i,j)10×20
S分量平均值Sm=j=120i=110S(i,j)10×20
V分量平均值Vm=j=120i=110V(i,j)10×20

Fig.5

Principle of gray level co-occurrence matrix"

Table 2

Gray-level co-occurrence matrix feature calculation formula"

特征计算公式
二阶矩(asm)asm=i=1kj=1k(G(i,j))2
熵(ent)ent=-i=1kj=1kG(i,j)logG(i,j)
相关性(cor)cor=i=1kj=1k(ij)G(i,j)-uiujsisj
差异性(dis)dis=i=1kj=1kG(i,j)|i-j|
对比度(con)con=n=0k-1n2i=1kj=1kG(i,j),|i-j|=n
逆差矩(hom)hom=i=1kj=1kG(i,j)1+(i-j)2

Fig.6

Random forest principles"

Fig.7

Classification feature importance"

Table 3

Classification accuracy"

分类特征准确性/%增长幅度/%
GLCM(0)84.0
GLCM(0)+ GLCM(90)90.16.1
GLCM(0)+ GLCM(90)+ GLCM(45)91.51.4
GLCM(0)+ GLCM(90)+ GLCM(45)+GLCM(135)92.51.0
GLCM(0)+ GLCM(90)+ GLCM(45)+GLCM(135)+HSV93.10.6
GLCM(0)+ GLCM(90)+ GLCM(45)+GLCM(135)+HSV+RGB93.30.2

Fig.8

Classification heat map before dimensionality reduction"

Fig.9

Classification heat map after dimensionality reduction"

Table 4

Best parameters for random forest models"

随机森林参数数值随机森林参数数值
n_estimators50min_samples_split2
max_depth11max_features4
min_samples_leaf1

Table 5

Comparison of model accuracy before and after dimension reduction"

准确率/%维数每张时间/s
降维前93.3300.24
降维后92.5160.16

Fig.10

Principle of navigation line fitting"

Table 6

Evaluation of classification effects"

指标公式数值
准确率/%Ac=TP+TNTP+TN+FP+FN91.8
敏感性/%Se=TPTP+FN90.7
特异性/%Sp=TNTN+FP92.3

Table 7

Three types of picture classification confusion matrix"

类别根茬行间茎秆碎叶残膜
根茬136104
行间茎秆碎叶151287
残膜83139

Fig.11

Line by line scan schematic"

Fig.12

Navigation line detection results"

Fig.13

Navigation line error detection sample diagram"

1 汤一平,王伟羊,朱威,等. 基于机器视觉的茶陇识别与采茶机导航方法[J]. 农业机械学报, 2016, 47(1): 45-50.
Tang Yi-ping, Wang Wei-yang, Zhu Wei, et al. Tea ridge identification and navigation method for tea-plucking machine based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 45-50.
2 关卓怀,陈科尹,丁幼春,等.水稻收获作业视觉导航路径提取方法[J].农业机械学报,2020, 51(1):19-28.
Guan Zhuo-huai, Chen Ke-yin, Ding You-chun,et al. Visual navigation path extraction method in rice harvesting[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1):19-28.
3 李云伍,徐俊杰,王铭枫,等. 丘陵山区田间道路自主行驶转运车及其视觉导航系统研制[J]. 农业工程学报, 2019, 35(1): 52-61.
Li Yun-wu, Xu Jun-jie,Wang Ming-feng,et al. Development of autonomous driving transfer trolley on field roads and its visual navigation system for hilly areas[J]. Transactions of the Chinese Society of Agricultural Engineering,2019, 35(1): 52-61.
4 廖娟,汪鹞,尹俊楠,等. 基于分区域特征点聚类的秧苗行中心线提取[J]. 农业机械学报, 2019, 50(11): 34-41.
Liao Juan, Wang Yao, Yin Jun-nan, et al. Detection of seedling row centerlines based on sub-regional feature points clustering[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 34-41.
5 赵岩,陈学庚,温浩军,等. 农田残膜污染治理技术研究现状与展望[J]. 农业机械学报, 2017, 48(6):1-14.
Zhao Yan,Chen Xue-geng,Wen Hao-jun,et al. Research status and prospect of control technology for residual plastic film pollution in farmland[J]. Transactions of the Chinese society for Agricultural Machinery, 2017, 48(6):1-14.
6 姬长英,周俊. 农业机械导航技术发展分析[J]. 农业机械学报, 2014, 45(9): 44-54.
Ji Chang-ying, Zhou Jun. Current situation of navigation technologies for agricultural machinery[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(9):44-54.
7 胡静涛,高雷,白晓平,等. 农业机械自动导航技术研究进展[J]. 农业工程学报, 2015, 31(10): 1-10.
Hu Jing-tao, Gao Lei, Bai Xiao-ping, et al. Review of research on automatic guidance of agricultural vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10): 1-10.
8 李景彬,陈兵旗,刘阳. 棉花铺膜播种机导航路线图像检测方法[J]. 农业机械学报, 2014, 45(1): 40-45.
Li Jing-bin, Chen Bing-qi, Liu Yang. Image detection method of navigation route of cotton plastic film mulch planter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 40-45.
9 彭顺正,坎杂,李景彬. 矮化密植枣园收获作业视觉导航路径提取[J]. 农业工程学报, 2017, 33(9): 45-52.
Peng Shun-zheng, Kan Za, Li Jing-bin. Extraction of visual navigation directrix for harvesting operation in short-stalked and close-planting jujube orchard[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(9):45-52.
10 刁智华,赵明珍,宋寅卯,等.基于机器视觉的玉米精准施药系统作物行识别算法及系统实现[J]. 农业工程学报,2015,31(7):47-52.
Diao Zhi-hua, Zhao Ming-zhen, Song Yin-mao, et al. Crop line recognition algorithm and realization in precision pesticide system based on machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(7):47-52.
11 宋宇,刘永博,刘路,等. 基于机器视觉的玉米根茎导航基准线提取方法[J]. 农业机械学报, 2017, 48(2): 38-44.
Song Yu, Liu Yong-bo, Liu Lu, et al. Extraction method of navigation baseline of corn roots based on machine vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(2):38-44.
12 孟庆宽,张漫,仇瑞承,等. 基于改进遗传算法的农机具视觉导航线检测[J]. 农业机械学报, 2014, 45(10): 39-46.
Meng Qing-kuan, Zhang Man, Qiu Rui-cheng, et al. Navigation line detection for farm machinery based on improved genetic algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 39-46.
13 王春雷,卢彩云,陈婉芝,等. 基于遗传算法和阈值滤噪的玉米根茬行图像分割[J]. 农业工程学报, 2019, 35(16): 198-205.
Wang Chun-lei, Lu Cai-yun, Chen Wan-zhi, et al.Image segmentation of maize stubble row based on genetic algorithm and threshold filtering noise[J]. Transactions of the Chinese Society of Agricultural Engineering,2019, 35(16): 198-205.
14 杨洋,张亚兰,苗伟,等. 基于卷积神经网络的玉米根茎精确识别与定位研究[J]. 农业机械学报, 2018, 49(10): 46-53.
Yang Yang, Zhang Ya-lan, Miao Wei, et al. Accurate identification and location of corn rhizome based on faster R-CNN[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 46-53.
15 Fu F, Duan J, Zou X, et al. Banana detection based on color and texture features in the natural environment[J]. Computers and Electronics in Agriculture, 2019,167:105057.
16 Abdalla A, Cen H, Wan L,et al. Fine-tuning convolutional neural network with transfer learning for semantic segmentation of ground-level oilseed rape images in a field with high weed pressure[J]. Computers and Electronics in Agriculture,2019,167:105091.
17 Bakhshipour A, Jafari A. Evaluation of support vector machine and artificial neural networks in weed detection using shape features[J]. Computers and Electronics in Agriculture, 2018,145:153-160.
18 蔡道清,李彦明,覃程锦,等. 水田田埂边界支持向量机检测方法[J]. 农业机械学报, 2019, 50(6): 22-27, 109.
Cai Dao-qing, Li Yan-ming, Qin Cheng-jin, et al. Detection method of boundary of paddy fields using support vector machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 22-27, 109.
19 黄小玉,李光林,马驰,等. 基于改进判别区域特征融合算法的近色背景绿色桃子识别[J].农业工程学报,2018,34(23):142-148.
Huang Xiao-yu, Li Guang-lin, Ma Chi, et al. Green peach recognition based on improved discriminative regional feature integration algorithm in similar background[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(23):142-148.
20 王煜,高向东,陈子琴,等. 激光-MAG复合焊接过程金属蒸气和背部熔池图像分析[J]. 机械工程学报,2019,55(19):167-173.
Wang Yu, Gao Xiang-dong, Chen Zi-qin, et al. Analysis of the images of metal vapor and bottom-molten pool in laser-MAG hybrid welding process[J]. Journal of Mechanical Engineering, 2019, 55(19):167-173.
21 Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979,67(5): 786-804.
22 Breiman L, Cutler R A. Random forests machine learning[J]. Journal of Clinical Microbiology, 2001, 2:199-228.
23 Criminisi A, Shotton J, Robertson D, et al. Regression forests for efficient anatomy detection and localization in CT studies[J]. Journal of Bacteriology, 1957,74(5):559-564.
24 Stumpf André, Kerle Norman. Object-oriented mapping of landslides using random forests[J]. Remote Sensing of Environment, 2011, 115(10):2564-2577.
25 石礼娟,卢军.基于随机森林的玉米发育程度自动测量方法[J].农业机械学报,2017,48(1):169-174.
Shi Li-juan, Lu Jun. Automatic measurement method for maize ear development degree based on random forest[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(1):169-174.
26 Verikas A, Gelzinis A, Bacauskiene M. Mining data with random forests: a survey and results of new tests[J]. Pattern Recognition, 2011, 44(2):330-349.
27 Raschka S. Python Machine Learning[M]. Birmingham: Packt Publishing, 2014.
28 Lin P,Li X,Li D,et al. Rapidly and exactly determining postharvest dry soybean seed quality based on machine vision technology[J]. Scientific Reports,2019,9(1):17143.
29 刘一鸣,侯智超,李晓琴,等.基于卷积神经网络的肺结节检测方法[J].生物医学工程学杂志,2019,36(6):969-977, 985.
Liu Yi-ming, Hou Zhi-chao, Li Xiao-qin, et al. Pulmonary nodule detection method based on convolutional neural network[J]. Journal of Biomedical Engineering,2019, 36(6):969-977, 985.
[1] Wan-fu GAO,Ping ZHANG,Liang HU. Nonlinear feature selection method based on dynamic change of selected features [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1293-1300.
[2] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[3] LIN Jin-hua, WANG Yan-jie, WANG Lu, YAO Yu. Real-time surface reconstruction based global camera pose optimization [J]. 吉林大学学报(工学版), 2018, 48(3): 909-918.
[4] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[5] LIU Jie, ZHANG Ping, GAO Wan-fu. Feature selection method based on conditional relevance [J]. 吉林大学学报(工学版), 2018, 48(3): 874-881.
[6] YUAN Zhe-ming, ZHANG Hong-yang, CHEN Yuan. HIV-1 protease cleavage site prediction based on feature selection and support vector machine [J]. 吉林大学学报(工学版), 2017, 47(2): 639-646.
[7] ZHANG Fei, SHAN Zhong-de, REN Yong-xin, NIE Jun-gang, LIU Feng. Calibration of line array camera for head defect detection system on cylinder cover [J]. 吉林大学学报(工学版), 2017, 47(2): 540-545.
[8] ZHOU Xiao-dong, ZHANG Ya-chao, TAN Qing-chang, ZHANG Wei-jun. New method of cylindricity measurement based on structured light vision technology [J]. 吉林大学学报(工学版), 2017, 47(2): 524-529.
[9] ZHAO Dong, ZANG Xue-bai, ZHAO Hong-wei. Random forest prediction method based on optimization of fruit fly [J]. 吉林大学学报(工学版), 2017, 47(2): 609-614.
[10] QIN Yu-gang, MA Yong, ZHANG Liang, LI Teng-fei. Parameter identification of ship's maneuvering motion based on improved least square method [J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.
[11] ZHANG Bo, WANG Wen-jun, WEE Minkooc, CHENG Bo. Detection handheld phone use by driver based on machine vision [J]. 吉林大学学报(工学版), 2015, 45(5): 1688-1695.
[12] ZHAO Jian, ZHANG Jin, ZHU Bing. Fuzzy sliding mode traction control based on road friction coefficient estimation [J]. 吉林大学学报(工学版), 2015, 45(4): 1036-1042.
[13] DAI Kun, YU Hong-yi, QIU Wen-bo,LI Qing. Unsupervised feature selection algorithm based on support vector machine for network data [J]. 吉林大学学报(工学版), 2015, 45(2): 576-582.
[14] WANG Gang, ZHANG Yu-xuan, LI Ying, CHEN Hui-ling, HU Wei-tong, QIN Lei. Novel method for microarray data dimension reduction [J]. 吉林大学学报(工学版), 2014, 44(5): 1429-1434.
[15] LIU Chang-ying, CAI Wen-jing, WANG Tian-hao, LI Ji-zhi, JIA Yan-mei, SONG Yu-he. Vision inspection technology of fracture splitting notch of auto connecting rod [J]. 吉林大学学报(工学版), 2014, 44(4): 1076-1080.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!