Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1767-1776.doi: 10.13229/j.cnki.jdxbgxb.20220851
Ming-hui SUN1,2(),Hao XUE1,2,Yu-bo JIN3(),Wei-dong QU4,Gui-he QIN1,2
CLC Number:
1 | Guo Q, Feng W, Zhou C, et al. Learning dynamic siamese network for visual object tracking[C]∥Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 1763-1771. |
2 | Feng W, Han R Z, Guo Q, et al. Dynamic saliency-aware regularization for correlation filter-based object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(7): 3232-3245. |
3 | Wang H Y, Xu Y J, Han Y H. Spotting and aggregating salient regions for video captioning[C]∥Proce-edings of the 26th ACM International Conference on Multimedia, Seoul, Korea, 2018: 1519-1526. |
4 | Chen Y, Zhang G, Wang S H, et al. Saliency-based spatiotemporal attention for video captioning[C]∥2018 IEEE Fourth International Conference on Multimedia Big Data, Xi'an, China, 2018: 1-8. |
5 | Guo C L, Zhang L M. A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression[J]. IEEE Transactions on Image Processing, 2009, 19(1): 185-198. |
6 | Itti L, Dhavale N, Pighin F. Realistic avatar eye and head animation using a neurobiological model of visu-al attention[J/OL]. [2022-06-28]. |
7 | Zhong S H, Liu Y, Ren F F, et al. Video saliency detection via dynamic consistent spatio-temporal attention modelling[C]∥Twenty-seventh AAAI Conference on Artificial Intelligence, Bellevue, USA, 2013: 1063-1069. |
8 | Wang W G, Shen J B, Guo F, et al. Revisiting video saliency: a large-scale benchmark and a new model[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 4894-4903. |
9 | Bak C, Kocak A, Erdem E, et al. Spatio-temporal saliency networks for dynamic saliency prediction[J]. IEEE Transactions on Multimedia, 2017, 20(7): 1688-1698. |
10 | Tran H D, Bak S, Xiang W, et al. Verification of deep convolutional neural networks using imagestars[J/OL]. [2022-06-28]. |
11 | Mathe S, Sminchisescu C. Actions in the eye: dynamic gaze datasets and learnt saliency models for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(7): 1408-1424. |
12 | Bazzani L, Larochelle H, Torresani L. Recurrent mixture density network for spatiotemporal visual attention[J/OL]. [2022-06-28]. |
13 | Droste R, Jiao J, Noble J A. Unified image and video saliency modeling[C]∥European Conference on Computer Vision, Glasgow, UK, 2020: 419-435. |
14 | Wu X Y, Wu Z Y, Zhang J L, et al. SalSAC: a video saliency prediction model with shuffled attentions and correlation-based ConvLSTM[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, New York, USA, 2020, 34(7): 12410-12417. |
15 | Min K, Corso J J. Tased-net: temporally-aggregating spatial encoder-decoder network for video saliency detection[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 2394-2403. |
16 | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]∥Advances in Neural Information Processing Systems, Los Angeles, USA, 2017: 5998-6008. |
17 | Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 7132-7141. |
18 | Woo S, Park J, Lee J Y, et al. Cbam: convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 2018: 3-19. |
19 | Riche N, Duvinage M, Mancas M, et al. Saliency and human fixations: state-of-the-art and study of comparison metrics[C]∥ Proceedings of the IEEE International Conference on Computer Vision, Sydney, Australia, 2013: 1153-1160. |
20 | Bylinskii Z, Judd T, Oliva A, et al. What do different evaluation metrics tell us about saliency models?[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(3): 740-757. |
21 | Wang W G, Shen J B. Deep visual attention prediction[J]. IEEE Transactions on Image Processing, 2017, 27(5): 2368-2378. |
22 | Kay W, Carreira J, Simonyan K, et al. The kinetics human action video dataset[J/OL]. [2022-06-28]. |
23 | He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: surpassing human-level performance on imagenet classification[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 1026-1034. |
24 | Huang X, Shen C Y, Boix X, et al. Salicon: reducing the semantic gap in saliency prediction by adapting deep neural networks[C]∥Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 2015: 262-270. |
25 | Cornia M, Baraldi L, Serra G, et al. Predicting human eye fixations via an LSTM-based saliency attentive model[J]. IEEE Transactions on Image Processing, 2018, 27(10): 5142-5154. |
26 | Jiang L, Xu M, Wang Z L. Predicting video saliency with object-to-motion CNN and two-layer convolutional LSTM[J/OL]. [2022-06-28]. |
27 | Lai Q X, Wang W G, Sun H Q, et al. Video saliency prediction using spatiotemporal residual attentive networks[J]. IEEE Transactions on Image Processing, 2019, 29: 1113-1126. |
28 | Wang L M, Tong Z, Ji B, et al. TDN: temporal difference networks for efficient action recognition[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 2021: 1895-1904. |
29 | Chen C F R, Panda R, Ramakrishnan K, et al. Deep analysis of CNN-based spatio-temporal representations for action recognition[J/OL]. [2022-06-30]. |
[1] | Xiao-hui WEI,Chen-yang WANG,Qi WU,Xin-yang ZHENG,Hong-mei YU,Heng-shan YUE. Systolic array-based CNN accelerator soft error approximate fault tolerance design [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1746-1755. |
[2] | Li-ping ZHANG,Bin-yu LIU,Song LI,Zhong-xiao HAO. Trajectory k nearest neighbor query method based on sparse multi-head attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1756-1766. |
[3] | Yu-kai LU,Shuai-ke YUAN,Shu-sheng XIONG,Shao-peng ZHU,Ning ZHANG. High precision detection system for automotive paint defects [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1205-1213. |
[4] | Yun-long GAO,Ming REN,Chuan WU,Wen GAO. An improved anchor-free model based on attention mechanism for ship detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1407-1416. |
[5] | Yu WANG,Kai ZHAO. Postprocessing of human pose heatmap based on sub⁃pixel location [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1385-1392. |
[6] | Dian-wei WANG,Chi ZHANG,Jie FANG,Zhi-jie XU. UAV target tracking algorithm based on high resolution siamese network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1426-1434. |
[7] | Chao XIA,Meng-jia WANG,Jian-yue Zhu,Zhi-gang YANG. Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 874-882. |
[8] | Li-ming LIANG,Long-song ZHOU,Jiang YIN,Xiao-qi SHENG. Fusion multi-scale Transformer skin lesion segmentation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1086-1098. |
[9] | Yun-zuo ZHANG,Wei GUO,Wen-bo LI. Omnidirectional accurate detection algorithm for dense small objects in remote sensing images [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1105-1113. |
[10] | Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332. |
[11] | Xiong-fei LI,Zi-xuan SONG,Rui ZHU,Xiao-li ZHANG. Remote sensing change detection model based on multi⁃scale fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 516-523. |
[12] | Yue-lin CHEN,Zhu-cheng GAO,Xiao-dong CAI. Long text semantic matching model based on BERT and dense composite network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 232-239. |
[13] | Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600. |
[14] | Ying HE,Zhuo-ran WANG,Xu ZHOU,Yan-heng LIU. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2632-2639. |
[15] | Yun-zuo ZHANG,Xu DONG,Zhao-quan CAI. Multi view gait cycle detection by fitting geometric features of lower limbs [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2611-2619. |
|