Journal of Jilin University(Engineering and Technology Edition) ›› 2023, Vol. 53 ›› Issue (9): 2611-2619.doi: 10.13229/j.cnki.jdxbgxb.20211229

Previous Articles     Next Articles

Multi view gait cycle detection by fitting geometric features of lower limbs

Yun-zuo ZHANG1(),Xu DONG1,Zhao-quan CAI2   

  1. 1.School of Information Science and Technology,Shijiazhuang Tiedao University,Shijiazhuang 050043,China
    2.School of Engineering,Shanwei Institute of Technology,Shanwei 516600,China
  • Received:2021-11-17 Online:2023-09-01 Published:2023-10-09

Abstract:

A multi view gait cycle detection method fitting the geometric features of lower limbs is proposed to address the issue of existing gait cycle detection methods being susceptible to changes in shooting angles. Firstly, the human posture topology in the gait video sequence was extracted by the MediaPipe model, simplifying the image preprocessing process. Then, by analyzing the periodic dynamic change law between the joint points in the human posture topology map under walking state, the inclination formed by the left shin and the horizontal ground and the Euclidean distance ratio from the midpoint of the left and right hip joints to the left and right ankle are extracted as features. Finally, the feature data were fitted into sinusoidal function waves by Fourier transform, and the gait period is detected based on the fitting results. Compared with the current mainstream gait cycle detection methods, the proposed method has achieved good front and back view and strabismus angle detection results.

Key words: computer application, gait cycle detection, multi view detection, pose geometric features, gait recognition, Fourier transform

CLC Number: 

  • TP391

Fig.1

BlazePose detection process"

Fig.2

Human posture topology"

Fig.3

BlazePose network structure diagram"

Fig.4

Flow chart of the method proposed in this paper"

Fig.5

Inclination acquisition process"

Fig.6

Inclination change process under 90°angle of view"

Fig.7

Change process of ratio in front view"

Fig.8

Distance from mid-hip to left and right ankles"

Fig.9

Fourier fitting process"

Fig.10

Waveforms from different perspectives on 001-nm-05 dataset"

Table 1

C value comparison table"

检测方法0°18°36°54°72°90°108°126°144°162°180°均值
文献[3]拟合法0.040.000.000.000.040.080.080.160.080.150.040.06
文献[3]分类法0.390.250.080.290.130.160.080.040.160.340.400.21
文献[120.480.000.080.080.070.000.000.000.000.411.000.19
文献[130.480.920.950.000.120.050.000.010.000.040.120.24
文献[140.180.950.000.000.070.050.050.050.000.040.400.16
文献[150.540.400.220.120.040.040.040.180.440.500.620.29
本文0.060.400.230.030.000.000.000.060.260.320.070.13

Table 2

W value comparison table"

检测方法0°18°36°54°72°90°108°126°144°162°180°均值均值(18°~162°均值(0°180°
文献[130.320.920.950.440.621.000.580.370.521.150.460.670.720.39
文献[140.180.230.160.380.570.820.680.420.310.220.130.370.430.28
文献[150.130.090.220.560.620.770.750.680.310.210.090.400.470.11
本文0.560.440.670.831.021.271.000.790.720.400.670.760.790.62
1 李贻斌, 郭佳旻, 张勤. 人体步态识别方法与技术[J]. 吉林大学学报: 工学版, 2020, 50(1): 1-18.
Li Yi-bin, Guo Jia-min, Zhang Qin. Methods and technologies of human gait recognition[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 1-18.
2 Phillips P J. Human identification technical challenges[C]∥Proceedings of IEEE International Conference on Image Processing, Rochester, USA, 2002: 49-52.
3 王科俊, 刘亮亮, 丁欣楠, 等. 基于卷积神经网络的步态周期检测方法[J]. 哈尔滨工程大学学报, 2021, 42(5): 656-663.
Wang Ke-jun, Liu Liang-liang, Ding Xin-nan, et al. Gait period detection method based on convolutional neural networks[J]. Journal of Harbin Engineering University, 2021, 42(5): 656-663.
4 汤荣山, 葛万成. 基于卷积神经网络和不完整步态周期的步态识别方法[J]. 通信技术, 2018, 51(12): 2980-2985.
Tang Rong-shan, Ge Wan-Cheng. Gait recognition method based on convolutional neural network and incomplete gait cycle[J]. Communication Technology, 2018, 51(12): 2980-2985.
5 Yang X C, Zhou Y, Zhang T H, et al. Gait recognition based on dynamic region analysis[J]. Signal Processing, 2008, 88(9): 2350-2356.
6 王科俊, 贲晛烨, 唐墨, 等. 基于区域特征分析的步态周期检测方法[P]. 中国: CN200910072171.4, 2011-3-16.
7 杨佩成. 面向术后康复的可穿戴步态监测与分析技术研究[D]. 南京: 南京大学计算机科学与技术系, 2020.
Yang Pei-cheng. Research on wearable gait monitoring and analysis technology for postoperative rehabilitation[D]. Nanjing: Department of Computer Science and Technology, Nanjing University, 2020.
8 Aminian K, Najafi B, Büla C, et al. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes[J]. Journal of Biomechanics, 2002, 35(5): 689-699.
9 陈法权. 基于可穿戴传感器的人体下肢动作识别及预测[D]. 乌鲁木齐: 新疆大学机械工程学院, 2020.
Chen Fa-quan. Recognition and prediction of human lower limb movements based on wearable sensors[D]. Urumqi: School of Mechanical Engineering, Xinjiang University, 2020.
10 闫河, 罗成, 李焕, 等. 基于步态能量图与VGG结合的步态识别方法[J]. 重庆理工大学学报: 自然科学, 2020, 34(5): 166-172.
Yan He, Luo Cheng, Li Huan, et al. Gait recognition method based on gait energy map combined with VGG[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(5): 166-172.
11 Lee C P, Tan A, Tan S C. Gait recognition with transient binary patterns[J]. Journal of Visual Communication and Image Representation, 2015, 33(11): 69-77.
12 Wang L, Tan T N, Ning H Z, et al. Silhouette analysis-based gait recognition for human identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1505-1518.
13 Ben X Y, Meng W X, Yan R. Dual-ellipse fitting approach for robust gait periodicity detection[J]. Neurocomputing, 2012, 79(3): 173-178.
14 Sarkar S, Phillips P J, Liu Z, et al. The human ID gait challenge problem: data sets, performance, and analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 162-177.
15 唐云祁, 薛傲, 丁建伟, 等. 基于帧差时空特征的步态周期检测方法[J]. 数据采集与处理, 2017, 32(3): 533-539.
Tang Yun-qi, Xue Ao, Ding Jian-wei, et al. Gait cycle detection by fusing temporal and spatial features with frame difference[J]. Journal of Data Acquisition and Processing, 2017, 32(3): 533-539.
16 Zhang F, Bazarevsky V, Vakunov A, et al. Mediapipe hands: on-device real-time hand tracking[EB/OL]. [2020-06-23]. .
17 Bazarevsky V, Grishchenko I, Raveendran K, et al. Blazepose: on-device real-time body pose tracking[EB/OL]. [2020-06-23].
18 李一波, 李昆. 双视角下多特征信息融合的步态识别[J]. 智能系统学报, 2013, 8(1): 74-79.
Li Yi-bo, Li Kun. Gait recognition based on dual-view and multiple feature information fusion[J]. CAAI Transactions on Intelligent Systems, 2013, 8(1): 74-79.
19 王新年, 胡丹丹, 张涛, 等. 姿态特征结合2维傅里叶变换的步态识别[J]. 中国图象图形学报, 2021, 26(4): 796-814.
Wang Xin-nian, Hu Dan-dan, Zhang Tao, et al. Gait recognition using pose features and 2D Fourier transform[J]. Journal of Image and Graphics, 2021, 26(4): 796-814.
[1] Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600.
[2] Ying HE,Zhuo-ran WANG,Xu ZHOU,Yan-heng LIU. Point of interest recommendation algorithm integrating social geographical information based on weighted matrix factorization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2632-2639.
[3] Ming-yao XIAO,Xiong-fei LI,Rui ZHU. Medical image fusion based on pixel correlation analysis in NSST domain [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2640-2648.
[4] Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379.
[5] Xiang-jiu CHE,Huan XU,Ming-yang PAN,Quan-le LIU. Two-stage learning algorithm for biomedical named entity recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2380-2387.
[6] Lian-ming WANG,Xin WU. Method for 3D motion parameter measurement based on pose estimation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2099-2108.
[7] Ze-qiang ZHANG,Wei LIANG,Meng-ke XIE,Hong-bin ZHENG. Elite differential evolution algorithm for mixed⁃model two⁃side disassembly line balancing problem [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1297-1304.
[8] Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426.
[9] Pei-yong LIU,Jie DONG,Luo-feng XIE,Yang-yang ZHU,Guo-fu YIN. Surface defect detection algorithm of magnetic tiles based on multi⁃branch convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1449-1457.
[10] Yu JIANG,Jia-zheng PAN,He-huai CHEN,Ling-zhi FU,Hong QI. Segmentation-based detector for traditional Chinese newspaper [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1146-1154.
[11] Peng YU,Yan PIAO. New method for extracting person re-identification attributes based on multi-scale features [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1155-1162.
[12] Hong-yang PAN,Zhao LIU,Bo YANG,Geng SUN,Yan-heng LIU. Overview of swarm intelligence methods for unmanned aerial vehicle systems based on new⁃generation information technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 629-642.
[13] Ying HE,Jun-song FAN,Wei WANG,Geng SUN,Yan-heng LIU. Joint optimization of secure communication and trajectory planning in unmanned aerial vehicle air⁃to⁃ground [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 913-922.
[14] Zhen-yu WU,Xiao-fei LIU,Yi-pu WANG. Trajectory planning of unmanned system based on DKRRT*⁃APF algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 781-791.
[15] Bo TAO,Fu-wu YAN,Zhi-shuai YIN,Dong-mei WU. 3D object detection based on high⁃precision map enhancement [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 802-809.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[3] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[4] Zhang He-sheng, Zhang Yi, Wen Hui-min, Hu Dong-cheng . Estimation approaches of average link travel time using GPS data[J]. 吉林大学学报(工学版), 2007, 37(03): 533 -0537 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[7] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[8] Li Cheng, Liu Zhi-hua, Zhang Ping . Analysis on stress and displacement of a composite flywheel composed of twolayer rotor with pre-displacement[J]. 吉林大学学报(工学版), 2007, 37(04): 828 -832 .
[9] Qu Zhao-wei,Chen Hong-yan,Li Zhi-hui,Hu Hong-yu,Wei Wei . 2D view reconstruction method based on single calibration pattern
[J]. 吉林大学学报(工学版), 2007, 37(05): 1159 -1163 .
[10] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .