Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (6): 1593-1600.doi: 10.13229/j.cnki.jdxbgxb.20220950

Previous Articles    

Short-term traffic flow prediction based on clustering algorithm and graph neural network

Xi-jun ZHANG(),Guang-jie YU,Yong CUI,Ji-yang SHANG   

  1. School of Computer and Communication,Lanzhou University of Technology,Lanzhou 730050,China
  • Received:2022-07-26 Online:2024-06-01 Published:2024-07-23

Abstract:

Aiming at the problem that existing prediction models fails to fully utilize the spatio-temporal correlation of traffic flow data, this paper proposes a deep learning model that combines clustering algorithm, graph neural network (GNN) and gated recurrent unit (GRU). First, the algorithm classifies to classifies preprocessed data into traffic patterns; then, the GNN is used to extract the spatial correlation of the traffic flow of the complex road network, integrating Pearson correlation analysis of the roads and the local clustering coefficients of the nodes to uncover potential node connections; the GRU is used to extract the temporal correlation between the traffic flow data, and through the mechanism of self-attention, captures interdependencies among data; finally, the outputs of GRU and GNN are combined with original inputs via residual connectivity, and the final prediction results are obtained after the fully connected layer. Multiple sets of experimental results demonstrate the superior prediction accuracy of the proposed model is over other baseline models and contrast model.

Key words: traffic flow prediction, graph neural network, clustering algorithm, gated recurrent unit, Pearson correlation coefficient, local clustering coefficient

CLC Number: 

  • TP183

Fig.1

Overall structure of model"

Fig.2

Adjacency coefficient"

Fig.3

Pearson adjacency coefficient"

Fig.4

Local clustering coefficient"

Fig.5

Silhouette Coefficient"

Fig.6

Process of clustering correlation coefficient"

Fig.7

Self-attention"

Fig.8

Traffic flow for two days of road number 0"

Table 1

Hyperparameter setting"

超参数名称超参数取值
历史交通流窗口大小6
GNN层数2
GRU层数2
损失函数MSELoss
优化器Adam
批处理大小64
训练轮数100

Fig.9

Comparison of model prediction performance"

Table 2

Performance comparison of different models"

预测模型评价指标
RMSEMAEMAPE/%
SVR44.7929.0119.26
GRU38.4723.5418.01
DCRNN38.0927.6917.12
T-GCN(文献[14])30.6419.2614.03
本文模型26.1317.2112.78

Table 3

Comparison of ablation performance"

预测模型评价指标
RMSEMAEMAPE/%
model w/o cluster coefficient27.3417.9713.11
model w/o Pearson coefficient27.2117.8513.03
model w/o K-means27.2918.0413.24
model w/o self-attention26.2317.2412.97
本文模型26.1317.2112.78
1 全国机动车保有量突破 4亿辆一季度新注册登记新能源汽车同比增加138.20%[EB/OL]. [2022-07-10].
2 方华伟. 智能交通系统的现状与展望[J]. 电子技术,2022, 51(3): 196-197.
Fang Hua-wei. Status and prospect of intelligent transportation system[J]. 2022, 51(3): 196-197.
3 刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85.
Liu Jing, Guan Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3):82-85.
4 刘学刚, 张腾飞, 韩印.基于ARIMA模型的短时交通流预测研究[J]. 物流科技, 2019, 42(12): 91-94, 102.
Liu Xue-gang, Zhang Teng-fei, Han Yin. Research on short-term traffic flow forecast based on ARIMA model[J]. Logistics Sci-Tech, 2019, 42(12): 91-94, 102.
5 周晓, 唐宇舟, 刘强. 基于卡尔曼滤波的道路平均速度预测模型研究[J]. 浙江工业大学学报, 2020, 48(4): 392-396.
Zhou Xiao, Tang Yu-zhou, Liu Qiang. Research on road average speed prediction model based on Kalman filter[J]. Journal of Zhejiang University of Technology, 2020, 48(4): 392-396.
6 Liu S Y, Liu S, Tian Y, et al. Research on forecast of rail traffic flow based on ARIMA model[J]. Journal of Physics: Conference Series, 2021, 1792(1): No.012065.
7 陈雪平, 曾盛, 胡刚. 基于BP神经网络的短时交通流预测[J].公路交通技术, 2008(3):115-117.
Chen Xue-ping, Zeng Sheng, Hu Gang. Short-time traffic flow prediction based on BP neural network[J]. Technology of Highway and Transport, 2008(3):115-117.
8 宋伟, 张杨. 依赖神经网络的交通流量预测[J]. 国外电子测量技术, 2019, 38(12): 27-31.
Song Wei, Zhang Yang. Prediction of traffic flow based on neural network[J]. Foreign Electronic Measurement Technology, 2019, 38(12): 27-31.
9 Huang X H, Ye Y M, Wang C, et al. A multi-mode traffic flow prediction method with clustering based attention convolution lstm[J]. Applied Intelligence, 2022, 52(13): 14773-14786.
10 谷振宇, 陈聪, 郑家佳, 等. 基于时空图卷积循环神经网络的交通流预测[J]. 控制与决策, 2022, 37(3):645-653.
Gu Zhen-yu, Chen Cong, Zheng Jia-jia, et al. Tranffic flow prediction based on STG-CRNN[J].Control and Decision,2022, 37(3): 645-653.
11 Bai J D, Zhu J W, Song Y J, et al. A3t-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 485-485.
12 黄伟坚, 李春贵. 基于时空注意力图卷积神经网络的交通速度预测[J]. 广西科技大学学报, 2022, 33(1): 54-62.
Huang Wei-jian, Li Chun-gui. Attention-based spatio-temporal graph convolutional neural network for traffic speed prediction[J]. Journal of Guangxi University of Science and Technology, 2022, 33(1): 54-62.
13 Yadav R K, Abhishek A, Sourav S, et al. GCN with clustering coefficients and attention module[C]∥2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA), Miami,USA, 2020: 185-190.
14 Zhao L, Song Y J, Zhang C, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
[1] Pei-guang JING,Yu-dou TIAN,Shao-chu WANG,Yun LI,Yu-ting SU. Traffic flow prediction algorithm based on dynamic diffusion graph convolution [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1582-1592.
[2] Feng LYU,Nian LI,Zhuang-zhuang FENG,Yang-hang ZHANG. Method of collaborative filtering recommendation of personalized product-service system based on user [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1935-1942.
[3] Zhuang-zhuang LIU,Wen-qing ZHENG,Jian ZHENG,Yi-zheng LI,Peng-yu JI,Ai-min SHA. Pavement surface temperature monitoring method based on gridding approach [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1746-1755.
[4] Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480.
[5] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Su-e CAO. Fast outlier mining algorithm in uncertain data set based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1181-1186.
[6] Hui-zhen ZHANG,Zheng-kai GAO,Jian-qiang LI,Chen-xi WANG,Yu-biao PAN,Cheng WANG,Jing WANG. Short⁃term passenger flow forecasting of urban rail transit based on recurrent neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 430-438.
[7] Li-yan DONG,Wei-ye LIANG,Yue-qun WANG,Yong-li LI. Global potential information combined graph neural networks for session-based recommendation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2964-2972.
[8] Si-bao WANG,Zhong-zheng GUO,Chi MA,Shi-long WANG. Thermal-force deformation analysis and prediction modeling of CNC gear hobbing machine workbench [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2761-2772.
[9] Yao-long KANG,Li-lu FENG,Jing-an ZHANG,Fu CHEN. Outlier mining algorithm for high dimensional categorical data streams based on spectral clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1422-1427.
[10] Long ZHANG,Tian-peng XU,Chao-bing WANG,Jian-yu YI,Can-zhuang ZHEN. Gearbox fault diagnosis baed on convolutional gated recurrent network [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 368-376.
[11] Meng-su ZHANG,Chun-tian LIU,Xi-jin LI,Yong-ping HUANG. Design of fuzzy comprehensive evaluation system for performance appraisal based on K⁃means clustering algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1851-1856.
[12] Rong QIAN,Ru ZHANG,Ke-jun ZHANG,Xin JIN,Shi-liang GE,Sheng JIANG. Capsule graph neural network based on global and local features fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1048-1054.
[13] Xiao-hui WEI,Bing-yi SUN,Jia-xu CUI. Recommending activity to users via deep graph neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 278-284.
[14] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[15] SUN Zong-yuan, FANG Shou-en. Hierarchical clustering algorithm of moving vehicle trajectories in entrances and exits freeway [J]. 吉林大学学报(工学版), 2017, 47(6): 1696-1702.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!