Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 368-376.doi: 10.13229/j.cnki.jdxbgxb20200930

Previous Articles    

Gearbox fault diagnosis baed on convolutional gated recurrent network

Long ZHANG1(),Tian-peng XU1,Chao-bing WANG1,2,Jian-yu YI1,Can-zhuang ZHEN1   

  1. 1.School of Mechatronics and Vehicle Engineering,East China Jiaotong University,Nanchang 330013,China
    2.CRRC Qishuyan Co. ,Ltd. ,Changzhou 213011,China
  • Received:2020-12-03 Online:2022-02-01 Published:2022-02-17

Abstract:

In order to make full use of the time series correlation characteristics of signals and enhance the model's ability to mine data information comprehensively, thereby further improving the diagnostic accuracy of CNN.This paper proposes a new gearbox fault diagnosis model, which combines CNN with Gated Recurrent Unit (GRU), which is good at dealing with data timing correlation characteristics. CNN extracts the spatial features of data by end-to-end, and uses the extracted features as the input of GRU to further extract the spatiotemporal features. Finally, the spatiotemporal features extracted by GRU are used as the input of softmax for fault identification. The experimental results show of two groups of gearbox experimental data show that the average fault diagnosis accuracy can reach 99.86% and 99.85% respectively and compared with other models, the results show that the model is superior and effective.

Key words: Mechanical design manufacture and automation major, convolutional neural network, gated recurrent unit, spatiotemporal characteristics, fault diagnosis

CLC Number: 

  • TH132.4

Fig.1

Internal structure diagram of GRU"

Fig.2

A new model of fault diagnosis based on method proposed in this paper"

Table 1

Fault types and pretreatment of gearbox 1"

故障类型样本总数训练样本验证样本测试样本故障类别
输入级齿轮断齿37522575751
输入级齿轮齿面胶合剥落37522575752
中间级齿轮齿面胶合剥落37522575753
输出级齿轮齿面胶合剥落与断齿37522575754
输出级齿轮缺齿37522575755
输入级齿轮齿根裂纹37522575756
中间级齿轮齿根裂纹37522575757
输出级齿轮齿根裂纹37522575758
输入级齿轮断齿与中间级齿轮齿面胶合剥落37522575759
健康375225757510

Table 2

Fault types and pretreatment of gearbox 2"

故障 类型故障程度样本 总数训练 样本验证 样本测试 样本故障 类别
正常无故障37522575751
剥落轻度37522575752
中度37522575753
重度37522575754
磨损轻度37522575755
重度37522575756

Table 3

Network structure parameters of new model"

网络层卷积/池化/节点步长输出大小激活函数填充方式
卷积层120×18None×256×64RuleValid
池化层14×14None×63×64\\
卷积层25×12None×30×128RuleValid
池化层22×12None×15×128\\
隐含层64\None×64\\
SoftMax层10\None×10SoftMax\

Fig.3

Loss and Accuracy changes of training and validation data"

Table 4

Results of 10 runs of new model"

类别错误分类数准确率/%平均准确率/%
1299.799.86
20100.0
3199.9
4199.9
5399.3
6199.9
70100.0
80100.0
9199.9
100100.0

Fig.4

Test data confusion matrix"

Fig.5

Loss and accuracy changes of training and validation data"

Fig.6

Validation data confusion matrix"

Fig.7

Visualization of hidden layer 2 features"

1 Liu Y B, Qian Q, Liu F, et al. Wayside bearing fault diagnosis based on envelope analysis paved with time-domain interpolation resampling and weighted-correlation-coefficient-guided stochastic resonance[J]. Shock and Vibration, 2017(1): 1-17.
2 McKee K K, Forbes G L, Mazhar I, et al. A vibration cavitation sensitivity parameter based on spectral and statistical methods[J]. Expert Systems with Applications, 2015, 42(1): 67-78.
3 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18.
Hu Niao-qing, Chen Hui-peng, Cheng Zhe, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-18.
4 黄海松, 魏建安, 任竹鹏, 等. 基于失衡样本特性过采样算法与SVM的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39(10): 65-74, 132.
Huang Hai-song, Wei Jian-an, Ren Zhu-peng, et al. Rolling bearing fault diagnosis based on imbanced sample characteristics oversampling algorithm and SVM[J]. Journal of Mechanical Engineering, 2020. 39(10): 65-74, 132.
5 谭刚, 李军. 机械设备故障诊断系统中决策树算法的应用研究[J]. 自动化与仪器仪表, 2016(12): 90-91.
Tan Gang, Li Jun. Application of decision tree algorithm in mechanical equipment fault diagnosis system[J].Automation & Instrumentation, 2016(12): 90-91.
6 何雷, 刘溯奇, 蒋婷, 等. 基于改进LMD与BP神经网络的变速箱故障诊断[J]. 机械传动, 2020, 44(1): 171-176.
He Lei, Liu Su-qi, Jiang Ting, et al. Gearbox fault diagnosis based on improved LMD and BP neural network[J]. Journal of Mechanical Transmission, 2020, 44(1): 171-176.
7 Boudiaf A, Moussaoui A, Dahane A, et al. A comparative study of various methods of bearing faults diagnosis using the case western reserve university data[J]. Journal of Failure Analysis and Prevention, 2016, 16(2): 271-284.
8 Li P, Chen Z K, Yang L T, et al. An incremental deep convolutional computation model for feature learning on industrial big data[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1341-1349.
9 Mao S B, Rajan D, Chia L T, et al. Deep residual learning for image recognition[J]. IEEE Computer Society, 2016: 770-778.
10 Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97.
11 Tran Q T, Nguyen S D, Seo Tae-ll.Algorithm for estimating online bearing fault upon the ability to extract meaningful information from big data of intelligent structures[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3804-3813.
12 Sun W F, Yao B,Zeng N Y, et al. An intelligent gear fault diagnosis methodology using a complex wavelet enhanced convolutional neural network[J]. Materials, 2017, 10(7): 790-807.
13 He J, Yang S, Gan C. Unsupervised fault diagnosis of a gear transmission chain using a deep belief network[J]. Sensors, 2017, 10(7): 1564-1583.
14 Eren L. Bearing fault detection by one-dimensional convolutional neural networks[J]. Mathematical Problems in Engineering, 2017(7): 8617315.
15 Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
16 李琳辉, 伦智梅, 连静, 等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报: 工学版, 2017, 47(2): 384-391.
Li Lin-hui, Zhi-mei Lun, Lian Jing, et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 384-391.
17 钟辉, 李红, 李振建, 等. 基于卷积神经网络的图像拼接篡改检测算法[J]. 吉林大学学报: 工学版, 2020, 50(4): 1428-1434.
Zhong Hui, Li Hong, Li Zhen-jian, et al. Image manipulation detection based on convolutional neural networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1428-1434.
18 何俊. 齿轮箱振动特性分析与智能故障诊断方法研究[D]. 杭州: 浙江大学机械工程学院, 2018.
He Jun. Vibration charcteristic analysis and intelligent fault diagnosis of gearboxes[D]. Hangzhou: School of Mechanical Engineering , Zhejiang University, 2018.
19 Vibroacoustic gear signatures with time-frequency spectrograms[EB/OL]. [202-12-03].
[1] Jin-hua WANG,Jia-wei HU,Jie CAO,Tao HUANG. Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328.
[2] Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295.
[3] Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309.
[4] Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62.
[5] Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153.
[6] Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844.
[7] Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641.
[8] De-xing WANG,Ruo-you WU,Hong-chun YUAN,Peng GONG,Yue WANG. Underwater image restoration based on multi-scale attention fusion and convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1396-1404.
[9] Hou⁃jie LI,Fa⁃sheng WANG,Jian⁃jun HE,Yu ZHOU,Wei LI,Yu⁃xuan DOU. Pseudo sample regularization Faster R⁃CNN for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1251-1260.
[10] Wei LI,Jian CHEN,Shan-yong TAO. Method of enhancing stochastic resonance signal of self⁃adaptive coupled periodic potential system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1091-1096.
[11] Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025.
[12] Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441.
[13] Ke-yan WANG,Di WANG,Xi ZHAO,Jing-yi CHEN,Yun-song LI. Image dehazing based on joint estimation via convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1771-1777.
[14] Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825.
[15] Xiang-jiu CHE,You-zheng DONG. Improved image recognition algorithm based on multi⁃scale information fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1747-1754.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!