Journal of Jilin University(Engineering and Technology Edition) ›› 2022, Vol. 52 ›› Issue (2): 368-376.doi: 10.13229/j.cnki.jdxbgxb20200930
Long ZHANG1(),Tian-peng XU1,Chao-bing WANG1,2,Jian-yu YI1,Can-zhuang ZHEN1
CLC Number:
1 | Liu Y B, Qian Q, Liu F, et al. Wayside bearing fault diagnosis based on envelope analysis paved with time-domain interpolation resampling and weighted-correlation-coefficient-guided stochastic resonance[J]. Shock and Vibration, 2017(1): 1-17. |
2 | McKee K K, Forbes G L, Mazhar I, et al. A vibration cavitation sensitivity parameter based on spectral and statistical methods[J]. Expert Systems with Applications, 2015, 42(1): 67-78. |
3 | 胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18. |
Hu Niao-qing, Chen Hui-peng, Cheng Zhe, et al. Fault diagnosis for planetary gearbox based on EMD and deep convolutional neural networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-18. | |
4 | 黄海松, 魏建安, 任竹鹏, 等. 基于失衡样本特性过采样算法与SVM的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39(10): 65-74, 132. |
Huang Hai-song, Wei Jian-an, Ren Zhu-peng, et al. Rolling bearing fault diagnosis based on imbanced sample characteristics oversampling algorithm and SVM[J]. Journal of Mechanical Engineering, 2020. 39(10): 65-74, 132. | |
5 | 谭刚, 李军. 机械设备故障诊断系统中决策树算法的应用研究[J]. 自动化与仪器仪表, 2016(12): 90-91. |
Tan Gang, Li Jun. Application of decision tree algorithm in mechanical equipment fault diagnosis system[J].Automation & Instrumentation, 2016(12): 90-91. | |
6 | 何雷, 刘溯奇, 蒋婷, 等. 基于改进LMD与BP神经网络的变速箱故障诊断[J]. 机械传动, 2020, 44(1): 171-176. |
He Lei, Liu Su-qi, Jiang Ting, et al. Gearbox fault diagnosis based on improved LMD and BP neural network[J]. Journal of Mechanical Transmission, 2020, 44(1): 171-176. | |
7 | Boudiaf A, Moussaoui A, Dahane A, et al. A comparative study of various methods of bearing faults diagnosis using the case western reserve university data[J]. Journal of Failure Analysis and Prevention, 2016, 16(2): 271-284. |
8 | Li P, Chen Z K, Yang L T, et al. An incremental deep convolutional computation model for feature learning on industrial big data[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1341-1349. |
9 | Mao S B, Rajan D, Chia L T, et al. Deep residual learning for image recognition[J]. IEEE Computer Society, 2016: 770-778. |
10 | Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. |
11 | Tran Q T, Nguyen S D, Seo Tae-ll.Algorithm for estimating online bearing fault upon the ability to extract meaningful information from big data of intelligent structures[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3804-3813. |
12 | Sun W F, Yao B,Zeng N Y, et al. An intelligent gear fault diagnosis methodology using a complex wavelet enhanced convolutional neural network[J]. Materials, 2017, 10(7): 790-807. |
13 | He J, Yang S, Gan C. Unsupervised fault diagnosis of a gear transmission chain using a deep belief network[J]. Sensors, 2017, 10(7): 1564-1583. |
14 | Eren L. Bearing fault detection by one-dimensional convolutional neural networks[J]. Mathematical Problems in Engineering, 2017(7): 8617315. |
15 | Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. |
16 | 李琳辉, 伦智梅, 连静, 等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报: 工学版, 2017, 47(2): 384-391. |
Li Lin-hui, Zhi-mei Lun, Lian Jing, et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2): 384-391. | |
17 | 钟辉, 李红, 李振建, 等. 基于卷积神经网络的图像拼接篡改检测算法[J]. 吉林大学学报: 工学版, 2020, 50(4): 1428-1434. |
Zhong Hui, Li Hong, Li Zhen-jian, et al. Image manipulation detection based on convolutional neural networks[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(4): 1428-1434. | |
18 | 何俊. 齿轮箱振动特性分析与智能故障诊断方法研究[D]. 杭州: 浙江大学机械工程学院, 2018. |
He Jun. Vibration charcteristic analysis and intelligent fault diagnosis of gearboxes[D]. Hangzhou: School of Mechanical Engineering , Zhejiang University, 2018. | |
19 | Vibroacoustic gear signatures with time-frequency spectrograms[EB/OL]. [202-12-03]. |
[1] | Jin-hua WANG,Jia-wei HU,Jie CAO,Tao HUANG. Multi⁃fault diagnosis of rolling bearing based on adaptive variational modal decomposition and integrated extreme learning machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 318-328. |
[2] | Shao-jiang DONG,Peng ZHU,Xue-wu PEI,Yang LI,Xiao-lin HU. Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 288-295. |
[3] | Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309. |
[4] | Liang DUAN,Chun-yuan SONG,Chao LIU,Wei WEI,Cheng-ji LYU. State recognition in bearing temperature of high-speed train based on machine learning algorithms [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(1): 53-62. |
[5] | Dan-tong OUYANG,Bi-ge ZHANG,Nai-yu TIAN,Li-ming ZHANG. Fail data reduction algorithm combining configuration checking with local search [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2144-2153. |
[6] | Hui ZHONG,Heng KANG,Ying-da LYU,Zhen-jian LI,Hong LI,Ruo-chuan OUYANG. Image manipulation localization algorithm based on channel attention convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1838-1844. |
[7] | Lao-hu YUAN,Dong-shan LIAN,Liang ZHANG,Yi LIU. Fault diagnosis of key mechanical components of aircraft based on densenet and support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1635-1641. |
[8] | De-xing WANG,Ruo-you WU,Hong-chun YUAN,Peng GONG,Yue WANG. Underwater image restoration based on multi-scale attention fusion and convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1396-1404. |
[9] | Hou⁃jie LI,Fa⁃sheng WANG,Jian⁃jun HE,Yu ZHOU,Wei LI,Yu⁃xuan DOU. Pseudo sample regularization Faster R⁃CNN for traffic sign detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1251-1260. |
[10] | Wei LI,Jian CHEN,Shan-yong TAO. Method of enhancing stochastic resonance signal of self⁃adaptive coupled periodic potential system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1091-1096. |
[11] | Dan-tong OUYANG,Yang LIU,Jie LIU. Fault diagnosis method based on test set under fault response guidance [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1017-1025. |
[12] | Feng-wen PAN,Dong-liang GONG,Ying GAO,Ming-wei XU,Bin MA. Fault diagnosis of current sensor based on linearization model of lithium ion battery [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 435-441. |
[13] | Ke-yan WANG,Di WANG,Xi ZHAO,Jing-yi CHEN,Yun-song LI. Image dehazing based on joint estimation via convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1771-1777. |
[14] | Guo-hua LIU,Wen-bin ZHOU. Pulse wave signal classification algorithm based on time⁃frequency domain feature aliasing using convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1818-1825. |
[15] | Xiang-jiu CHE,You-zheng DONG. Improved image recognition algorithm based on multi⁃scale information fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(5): 1747-1754. |
|