Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (7): 2015-2025.doi: 10.13229/j.cnki.jdxbgxb.20221128

Previous Articles    

Experiment on compressive strength of simulated lunar soil based on grey correlation analysis

En-liang WANG1,2(),Zhi-feng REN1,2,Chu WANG3,Jun-wei LIU2,4,Xing-chao LIU1,2,Ye TIAN2,5,Meng ZOU6,Zi-xiao LU7,Wei-wei ZHANG4,Sheng-yuan JIANG4()   

  1. 1.School of Water Conservancy and Civil Engineering,Northeast Agricultural University,Harbin 150030,China
    2.HIT-NEAU Joint Laboratory of Planetary Icy Regolith Analysis and Measurement,Harbin 150030,China
    3.Beijing Space Vehicle General Design Department,China Institute of Space Technology,Beijing 100094,China
    4.Aerospace Mechanism and Control Research Center,Harbin Institute of Technology,Harbin 150001,China
    5.Light Industry College,Harbin University of Commerce,Harbin 150028,China
    6.Key Laboratory of Bionic Engineering,Ministry of Education,Jilin University,Changchun 130022,China
    7.National Center for Nanoscience and Technology,Beijing 100190,China
  • Received:2022-08-31 Online:2024-07-01 Published:2024-08-05
  • Contact: Sheng-yuan JIANG E-mail:hljwel@126.com;jiangshy@hit.edu.cn

Abstract:

The primary objective of the Chang'e-7 mission is to detect water ice in the permanently shadowed regions of the Moon's south pole. This study involves conducting simulation research within an Earth-based environment, preparing test samples of polar hydrous simulated lunar soil, and assessing the mechanical properties of these simulants under ultra-low temperatures. Additionally, it analyzes how various factors—including moisture content, compactness, temperature, loading rate, substrate composition, and compressive strength—interact. The results indicate that the compressive strength of the frozen lunar soil simulants increases with higher moisture content, greater compactness, and lower temperatures, while it is less influenced by variations in loading rate. The compressive strength is affected by substrate composition in the following order:100% plagioclase <90% plagioclase +10% basaltic <70% plagioclase +30% basaltic <100% basaltic lunar soil simulant. Furthermore, this study employs grey correlation analysis to explore the relationships among fundamental physical property indices such as moisture content, compactness, temperature, loading rate, substrate ratio, and compressive strength. The analysis reveals the following order of correlation strength: moisture content>compactness>temperature>substrate ratio>loading rate. This paper not only examines the preparation and mechanical properties of aqueous lunar soil but also proposes a more systematic and standardized implementation scheme. This serves as a foundational basis for understanding the characteristics of polar aqueous lunar soil, providing valuable theoretical insights and references for subsequent lunar soil simulation research..

Key words: terramechanics, hydrous lunar soil simulant, compressive strength, grey correlation theory, correlation degree

CLC Number: 

  • TU441

Table 1

Composition and particle size index of basaltic simulated lunar soil"

物质组成形态比重压缩指数颗粒级配/%
中值粒径/μmCuCc
斜长石,其他镁铁矿物棱角状2.940.3741.910.95

Table 2

Composition and particle size index of plagioclase simulated lunar soil"

物质组成形态比重颗粒级配/%
中值粒径/μmCuCc
玄武质火山渣,钛铁矿和橄榄石矿等棱角次棱角状2.7388.3310.810.92

Fig.1

Drying diagram of lunar soil simulant"

Fig.2

Schematic diagram of mixing of lunar soil simulant"

Fig.3

Standing diagram of lunar soil simulant"

Fig.4

Schematic diagram of compaction of lunar soil simulant"

Fig.5

Schematic diagram of freezing of lunar soil simulant"

Fig.6

Ultralow-temperature moon soil mechanical properties test system"

Fig.7

Compressive strength of lunar soil simulant with different moisture content"

Fig.8

Compressive strength of lunar soil simulant with different compactness"

Fig.9

Compressive strength of lunar soil simulant at different temperatures"

Fig.10

Compressive strength of lunar soil simulant at different loading rates"

Fig.11

Compressive strength of lunar soil simulant with different base material ratio"

Table 3

Grey system sequence"

编号斜长岩占比/%含水率/%温度/℃相对密实度/%加载速率/(mm·min-1强度/MPa
11005-190991017.74
210010-190991027.41
310015.50-190991053.16
410010-1099105.76
510010-30991013.65
610010-50991016.62
710010-70991019.28
810010-230991028.84
910010-190701015.32
1010010-190861024.45
1110010-190993027.19
1210010-190992531.91
1310010-190992028.08
1410010-190991533.89
1510010-19099531.66
1610010-19099122.68
179015.50-190991053.57
187015.50-190991060.44
19015.50-190991067.34

Table 4

Association coefficients table"

斜长岩占比含水率温度相对密实度加载速率
第1项0.6880.9010.6440.7130.808
第2项0.8570.9810.7900.8970.952
第3项0.6260.7770.6670.6060.551
第4项0.5530.6010.8960.5690.628
第5项0.6350.7000.8060.6560.736
第6项0.6720.7460.8210.6970.787
第7项0.7100.7930.8420.7370.840
第8项0.9450.9180.7440.9940.863
第9项0.6550.7250.6160.8320.764
第10项0.7970.9030.7390.9250.964
第11项0.8520.9740.7860.8910.403
第12项0.9680.8980.8840.9820.510
第13项0.8721.0000.8030.9130.590
第14项0.9750.8530.9320.9280.878
第15项0.9610.9040.8780.9890.642
第16项0.7650.8620.7110.7960.626
第17项0.5850.7700.6620.6020.547
第18项0.4740.6660.5830.5360.492
第19项0.3330.5860.5210.4830.447

Table 5

Association ranking results"

评价项关联度排名
斜长岩占比/%0.7334
含水率/%0.8191
温度/℃0.7543
相对密实度/%0.7762
加载速率/(mm·min-10.6865

Fig.12

Rank of each evaluation item"

Table 6

Basic physical parameters of lunar soil in the Antarctic permanent shaded area[25-29]"

序号参数基本物理参数
1密实度平均密度为1.4~1.8 g/cm3,相对密度为2.76~2.86 g/cm3
2温度月球极区夏季最高温度可达308 K,冬季最低温度约为10 K,夏季平均温度为201 K,冬季平均温度为42 K
3含水率月球永久阴影区月壤水冰富集深度大于1.8 m,根据M3、LCROSS等探测任务发现,其含水率在1%以上,最高超过5.6%
1 李雄耀,李阳,唐红,等.月面环境过程研究评述[J].矿物岩石地球化学通报,2019,38(3):438-439,443-458.
Li Xiong-yao, Li Yang, Tang Hong, et al. A review of environmental processes on lunar surface[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019,38(3):438-439,443-458.
2 Basilevsky A T, Abdrakhimov A M, Dorofeeva V A. Water and other volatiles on the moon: a review[J]. Solar System Research, 2012, 46(2):89-107.
3 Needham D, Siegler M, Li S, et al. Calculated thicknesses of volcanically derived water ice deposits at the lunar poles[C]∥ Phoenix, Arizona GSA Annual Conference-2019,Phoenix City,USA,2019: No.341001.
4 Needham D H, Kring D A. Lunar volcanism produced a transient atmosphere around the ancient Moon[J]. Earth & Planetary Science Letters, 2017, 478:175-178.
5 Jacquet E, Robert F. Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites[J]. Icarus, 2013, 223(2):722-732.
6 Pitcher C, Kömle N, Leibniz O, et al. Investigation of the properties of icy lunar polar regolith simulants[J]. Advances in Space Research, 2016, 57(5): 1197-1208.
7 Pitcher C, Gao Y. Analysis of drill head designs for dual-reciprocating drilling technique in planetary regoliths[J]. Advances in Space Research, 2015, 56(8): 1765-1776.
8 Klenhenz J, Linne D. Preparation of a frozen regolith simulant bed for ISRU component testing in a vacuum chamber[C]∥The 51st AIAA Aerospace Sciences Meeting, Greg Wayne, USA, 2013: No.2013-6732.
9 Rostami J, Gertsch L, Gustafson R,et al. Properties of frozen soil for excavation on the moon[C]∥SRM International Symposium on 5th Asian Rock Mechanics Symposium,Tehran, Iran,2008: No.181.
10 邹猛,李建桥,刘国敏,等. 模拟月壤地面力学性质试验研究[J].岩土力学,2011,32(4):1057-1061.
Zou Meng, Li Jian-qiao, Liu Guo-min . et al. Experimental study of terra-mechanics characters of simulant lunar soil[J]. Rock and Soil Mechanics,2011,32(4):1057-1061.
11 Atkinson J, Zacny K. Mechanical properties of icy lunar regolith: application to ISRU on the moon and mars[C]∥ Earth and Space 2018: Engineering for Extreme Environments. Reston: American Society of Civil Engineers, 2018:109-120.
12 汪恩良,任志凤,韩红卫,等.超低温冻结粘土单轴抗压力学性质试验研究[J].岩土工程学报 2021,43(10):1851-1860.
Wang En-liang, Ren Zhi-feng, Han Hong-wei . et al. Ex perimental study on uniaxial compressive strength of ultra-low temperature frozen clay[J]. Chinese Journal of Geotechnical Engineering, 2021,43(10):1851-1860.
13 宫亚峰,申杨凡,谭国金,等.不同孔隙率下纤维土无侧限抗压强度[J].吉林大学学报:工学版,2018,48(3):712-719.
Gong Ya-feng, Shen Yang-fan, Tan Guo-jin, et al. Unconfined compressive strength of fiber soil with different porosity[J]. Journal of Jilin University(Engineering and Technology Edition), 2018,48(3):712-719.
14 张勇敢,鲁洋,刘斯宏,等.温度和掺砾量对冻结掺砾黏土单轴压缩特性影响的试验研究[J].岩石力学与工程学报,2019,38(11):2357-2364.
Zhang Yong-gan, Lu Yang, Liu Si-hong, et al. Influence of temperature and gravel content on uniaxial compressive characteristics of frozen gravel-mixed clays[J]. Chinese Journal of Rock Mechanics and Engineering, 2019,38(11):2357-2364.
15 杜海民,张淑娟,马巍.高含冰(水)量冻土的单轴抗压强度变化特性研究[J].冰川冻土,2014,36(5):1213-1219.
Du Hai-min, Zhang Shu-juan, Ma Wei. Study of the uniaxial compressive strength characteristics of frozen soil with high ice /water content[J]. Journal of Glaciology and Geocryology, 2014, 36(5): 1213-1219.
16 赵程,申向东,贾尚华,等.密实度对压实水泥土强度的影响[J].岩土工程学报,2013,35():360-365.
Zhao Cheng, Shen Xiang-dong, Jia Shang-hua, et al. Influence of density on strength of cemented soil [J]. Journal of Glaciology and Geocryology, 2013,35(Sup.1):360-365.
17 黄中伟,位江巍,李根生,等.液氮冻结对岩石抗拉及抗压强度影响试验研究[J].岩土力学,2016,37(3):694-700, 834.
Huang Zhong-wei, Wei Jiang-wei, Li Gen-sheng, et al. An experimental study of tensile and compressive strength of rocks under cryogenic nitrogen freezing [J]. Rock and Soil Mechanics, 2016,37(3):694-700, 834.
18 程永春,李赫,李立顶,等.基于灰色关联度的矿料对沥青混合料力学性能的影响分析[J].吉林大学学报:工学版, 2021,51(3):925-935.
Cheng Yong-chun, Li He, Li Li-ding, et al. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree[J].Journal of Jilin University(Engineering and Technology Edition), 2021,51(3):925-935.
19 Fangfang W. Research on the model and application progress based on grey relational analysis theory[J]. Adv Educ Technol Psychol, 2021 (5): 30-35.
20 刘思峰,郭天榜,党辉国,等.灰色系统理论及其应用[M].北京:科学出版社,2000.
21 杨印生,谢鹏扬,李洪伟.基于DEA的加权灰色关联分析方法[J].吉林大学学报:工学版,2003(1):98-101.
Yang Yin-sheng, Xie Peng-yang, Li Hong-wei.Weighted gray correlational analysis method based on DEA[J]. Journal of Jilin University(Engineering and Technology Edition), 2003(1):98-101.
22 Ren Z, Liu J, Jiang H, et al. Experimental study and simulation for unfrozen water and compressive strength of frozen soil based on artificial freezing technology[J]. Cold Regions Science and Technology, 2022,205:No.103711.
23 Linke S, Windisch L, Kueter N, et al. TUBS-M and TUBS-T based modular regolith simulant system for the support of lunar ISRU activities[J]. Planetary and Space Science, 2020, 180:No. 104747.
24 刘君巍, 汪恩良, 田野, 等. 月壤水冰组构模拟及力学特性测试分析[J]. 深空探测学报, 2022, 9(2): 134-140.
Liu Jun-wei, Wang En-liang, Tian Ye,et al. Fabric simulation and mechanical characteristics test and analysis of icy lunar regolith[J].Journal of Deep Space Exploration, 2022, 9(2): 134-140.
25 Mitchell J K, Houston W N, Scott R F, et al. Mechanical properties of lunar soil: density, porosity, cohesion and angle,of internal friction[C]∥Lunar and Planetary Science Conference Proceedings, Texas,USA,1972: No.3235.
26 Carrier III W D, Olhoeft G R, Mendell W. Physical Properties of the Lunar Surface[M]. Cambridge: Cambridge University Press,1991.
[1] Kai-xiang CHEN,He-nian ZHANG,Pei-sheng XI,Chang-dan WANG,Tao YU,Bing-xin ZHANG. Influence of carbonization humidity on mechanics and durability of carbonization block [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 445-452.
[2] Zhen-yu HU,Yan SHEN,Wei-jun WANG,Xiao-tao LUO,Meng ZOU. Analysis of drawbar pull to CE⁃4 Lunar rover based on rutting image of wheel [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2474-2482.
[3] Ye TIAN,Nan-nan LI,Jun-wei LIU,Sheng-yuan JIANG,Chu WANG,Wei-wei ZHANG. Identification of critical fragments cutting load of simulated lunar soil based on support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2143-2151.
[4] Lu WEI,Lei GAO,Jin-hong LI,Jian YANG,Yu-lin TIAN. Traffic sub⁃area division method based on density peak clustering [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(1): 124-131.
[5] Chen HUA,Run-xin NIU,Biao YU. Methods and applications of ground vehicle mobility evaluation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(6): 1229-1244.
[6] Long XUE,Meng YAO,Li-ben LI,Yin-wu LI,Xiang-jin DENG,Jian-qiao LI,Meng ZOU. Experimental analysis of mechanical properties of surface lunar soil based on lunar indentation [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 497-503.
[7] Yi-hong WANG,Qiao-luo TIAN,Guan-qi LAN,Sheng-fa YAO,Jian-xiong ZHANG,Xi LIU. Experimental research on the mechanical properties of concrete column reinforced with 630 MPa high⁃strength steel under large eccentric loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2626-2635.
[8] Kang WANG,Meng YAO,Li-ben LI,Jian-qiao LI,Xiang-jin DENG,Meng ZOU,Long XUE. Mechanical performance identification for lunar soil in lunar surface sampling [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1146-1152.
[9] Yong-chun CHENG,He LI,Li-ding LI,Hai-tao WANG,Yun-shuo BAI,Chao CHAI. Analysis of mechanical properties of asphalt mixture affected by aggregate based on grey relational degree [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 925-935.
[10] Wen-ting DAI,Ze-hua SI,Zhen WANG,Qi WANG. Test on road performance of soils stabilized by sisal fiber and ionic soil stabilizer with cement [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 589-593.
[11] Da-yi QU,Yan-feng JIA,Dong-mei LIU,Jing-ru YANG,Wu-lin WANG. Dynamic partitioning method for road network intersection considering multiple factors [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1478-1483.
[12] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[13] SU Ying-she, YANG Yuan-yuan. Seismic compression performance of the concrete under high temperature [J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
[14] MENG Song-He, GAO Hui-Ting, SUN Li-An, SHI Hong-Jun. Effect of silica fumeslag on performance of polypropylene fiber concrete [J]. 吉林大学学报(工学版), 2010, 40(增刊): 214-0217.
[15] ZHANG Peng,DENG Zong-quan,HU Ming,GAO Hai-bo. Mobility performance analysis of lunar rover with center of mass varied based on the theory of terramechanics [J]. 吉林大学学报(工学版), 2009, 39(06): 1573-1578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!