Journal of Jilin University(Engineering and Technology Edition) ›› 2021, Vol. 51 ›› Issue (3): 1146-1152.doi: 10.13229/j.cnki.jdxbgxb20200108

Previous Articles    

Mechanical performance identification for lunar soil in lunar surface sampling

Kang WANG1(),Meng YAO1,Li-ben LI2,Jian-qiao LI2,Xiang-jin DENG1,Meng ZOU2,Long XUE3()   

  1. 1.Beijing Institute of Spacecraft System Engineering,China Academy of Space Technology,Beijing 100094,China
    2.Key Laboratory of Bionic Engineering,Ministry of Education,Changchun 130022,China
    3.Key Laboratory of Modern Agricultural Equipment of Jiangxi Province,Jiangxi Agricultural University,Nanchang 330045,China
  • Received:2020-02-27 Online:2021-05-01 Published:2021-05-07
  • Contact: Long XUE E-mail:68wangkang@163.com;ultimata@163.com

Abstract:

To ensure the safety of the sampling task on lunar surface, the lunar sampling arm should contact with lunar soil in advance to identify the lunar soil compactness. Based on geometric parameters of the indentation between the manipulator and lunar soil obtained by the stereo cameras, a model was established to identify mechanical performance of the lunar soil using least squares support vector machine. A total of 264 data were collected. The data was split into two data set randomly, one was calibration set (contains 96 data) and the other was prediction set (contains 48 data). Indentation length, deep, area and cube were used as input parameters to establish the prediction model, and the accuracy of prediction set are 93.75% of CE5_1, 83.33% of CE5_2, and 87.50% of CE5_3, respectively. The results show that this prediction model can be used to identify mechanical performance quickly which can be used as a method to determine the sample’s depth for lunar soil surface.

Key words: bionic engineering, terramechanics, surface sampling, lunar regolith, image processing, support vector machine

CLC Number: 

  • TB17

Table 1

Relative density and soil porosity oflunar soil simulant"

模拟月壤状态相对密度/%孔隙比
松散301.45
中密501.16
密实700.94

Fig.1

Contact part of lunar sampling arm"

Fig.2

Schematic diagram of test process"

Fig.3

Image acquisition of indentationusing left camera"

Table 2

Test data statistics"

模拟月壤类型状态试验数量建模组预测组合计
CE5标称模拟月壤松散489648144
中密48
密实48
CE5挑战模拟月壤松散20362460
中密20
密实20
CE5极端模拟月壤松散20362460
中密20
密实20

Fig.4

Side view of indentation"

Fig.5

ROI of indentation and image binaryzation"

Table 3

Bulk density of CE5"

模拟月壤类型状态容重均值/(g·cm-3)
CE5标称模拟月壤松散1.577
中密1.630
密实1.709
CE5挑战模拟月壤松散1.595
中密1.632
密实1.714
CE5极端模拟月壤松散1.613
中密1.671
密实1.856

Fig.6

Discriminant results of three lunar soil simulant"

Table 4

Statistics of test results"

模拟月壤类型状态建模组预测组预测组准确率%
数量误判数量误判
CE5_1松散32316193.75
中密322162
密实321160
CE5_2松散1208183.33
中密12182
密实12181
CE5_3松散1218187.50
中密12282
密实12180
1 陈百超,邹猛,党兆龙,等. CE-3月球车筛网轮月面沉陷行为试验[J]. 吉林大学学报:工学版, 2019, 49(6):1836-1843.
Chen Bai-chao, Zou Meng, Dang Zhao-long, et al. Experiment on pressure⁃sinkage for mesh wheels of CE⁃3lunar rover on lunar regolith[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6):1836-1843.
2 马常友,高海波,丁亮,等. 机器人末端执行器自更换机构设计及对接策略[J]. 吉林大学学报:工学版, 2019, 49(6):2027-2037.
Ma Chang-you, Gao Hai-bo, Ding Liang, et al. Mechanism design and docking strategy forend⁃effectors exchange of robot[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6):2027-2037.
3 Moore H J, Bickler D B, Crisp J A, et al. Soil-like deposits observed by Sojourner, the Pathfinder rover[J]. Journal of Geophysical Research: Planets. 1999, 104(E4):8729-8746.
4 Arvidson R E, Anderson R C, Bartlett P, et al. Localization and physical property experiments conducted by opportunity at meridiani planum[J]. Science, 2004, 306(5702):1730-1733.
5 Arvidson R E, Anderson R C, Bartlett P, et al. Localization and physical properties experiments conducted by Spirit at Gusev crater[J]. Science, 2004, 305(5685):821-824.
6 Seneviratne L, Althoefer K, Zweiri Y, et al. The modelling and estimation of driving forces for unmanned ground vehicles in outdoor terrain[J]. International Journal of Modelling, Identification and Control, 2009, 6(1):40-50.
7 Hutangkabodee S, Zweiri Y H, Seneviratne L D, et al. Soil parameter identification for wheel-terrain interaction dynamics and traversability prediction[J]. International Journal of Automation and Computing, 2006, 3(3):244-251.
8 崔平远, 刘冰, 居鹤华. 月壤力学参数在线估计算法研究[J]. 计算机测量与控制, 2008, 16(2):245-247.
Cui Ping-yuan, Liu Bing, Ju He-hua. Research on mechanical parameters online estimation of lunar soil[J]. Computer Measurem & Control, 2008, 16(2):245-247.
9 Ding L, Deng Z Q, Gao H B, et al. Planetary rovers' wheel-soil interaction mechanics: new challenges and applications for wheeled mobile robots[J]. Intel Serv Robotics, 2011, 4(1):17-38.
10 丁亮, 高海波, 邓宗全,等. 基于月球车轮地作用地面力学积分模型的月壤力学参数辨识方法[J]. 航空学报, 2011, 32(6):1112-1123.
Ding Liang, Gao Hai-bo, Deng Zong-quan, et al. An approach of identifying mechanical parameters for lunar soil based on itergrated wheel-soil interaction terramechanics model of rovers[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1112-1123.
11 Long Xue, Li Jian-qiao, Zou Meng, et al. In situ identification of shearing parameters for loose lunar soil using least squares support vector machine[J]. Aerospace Science and Technology, 2016, 53:154-161.
12 Cross M. Estimating terrain parameters with a rigid wheeled rover using neural networks[D]. Canada: Department of Mechanical and Aerospace Engineering, Carleton University, 2012.
13 Chen Chong-bin, Quan Qi-quan, Shi Xiao-meng, et al. Multi-state autonomous drilling for lunar exploration[J]. Chinese Journal of Aeronautics, 2016, 29(5):1397-1404.
14 Shaw A, Arvidson R E, Bonitz R, et al. Phoenix soil physical properties investigation[J]. Journal of Geophysical Research: Planets, 2009, 114(E1):E00E05.
15 Wilkinson A, DeGennaro A. Digging and pushing lunar regolith: classical soil mechanics and the forces needed for excavation and traction[J]. Journal of Terramechanics, 2007, 44(2):133-152.
16 Zweiri Y H, Seneviratne L D, Althoefer K. Parameter estimation for excavator arm using generalized Newton method[J]. IEEE Transactions on Robotics, 2004, 20(4):762-767.
17 Blouin S, Hemami A, Lipsett M. Review of resistive force models for earthmoving processes[J]. Journal of Aerospace Engineering, 2001, 14(3):102-111.
18 郑燕红, 姚猛, 金晟毅,等. 月面复杂地形表层采样可采点确定方法[J]. 中国空间科学技术, 2019, 39(2):41-48.
Zheng Yan-hong, Yao Meng, Jin Sheng-yi, et al. Lunar surface sampling point selection for uneven terrain[J]. Chinese Space Science and Technology, 2019, 39(2):41-48.
19 姚猛, 郑燕红, 赵志晖, 等. 一种月表采样器合理铲挖深度的研究[J]. 航天器工程, 2017, 26(3):50-56.
Yao Meng, Zheng Yan-hong, Zhao Zhi-hui, et al. Research on reasonable excavation depth for lunar regolith sampler[J]. Spacecraft Engineering, 2017, 26(3):50-56.
20 郑燕红, 邓湘金, 庞勇,等. 月球风化层钻取采样过程密实度分类研究[J]. 航空学报, 2020, 41(4):223391.
Zheng Yan-hong, Deng Xiang-jin, Pang Yong, et al. Research on classification of relative density in lunar regolith drilling[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4):223391.
21 薛龙, 邹猛, 李建桥,等. 基于轮地作用参数和PLSDA方法的月壤力学性能评估[J]. 航空学报,2015, 36(11):3751-3758.
Xue Long, Zou Meng, Li Jian-qiao, et al. Mechanical performance estimation of lunar soil using wheel-soil interaction parameter and PLSDA[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11):3751-3758.
22 李雄飞, 王婧, 张小利, 等. 基于SVM和窗口梯度的多焦距图像融合方法[J]. 吉林大学学报:工学版, 2020, 50(1):227-236.
Li Xiong-fei, Wang Jing, Zhang Xiao-li, et al. Multi-focus image fusion based on support vector machines and window gradient[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1):227-236.
23 Suykens J A K, Gestel T V, Brabanter J D, et al. Least Squares Support Vector Machines[M]. Singapore: World Scientific,2002.
[1] Jian LI,Kong-yu LIU,Xian-sheng REN,Qi XIONG,Xue-feng DOU. Application of canny algorithm based on adaptive threshold in MR Image edge detection [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 712-719.
[2] Fu LIU,Lu LIU,Tao HOU,Yun LIU. Night road image enhancement method based on optimized MSR [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 323-330.
[3] Zhi-hui QIAN,Si-jie WU,Qiang WANG,Xin-yan ZHOU,Jia-nan WU,Lei REN,Lu-quan REN. Design of bionic tensegrity leg and simulation analysis of its impact resistance [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 758-764.
[4] Xiong-fei LI,Jing WANG,Xiao-li ZHANG,Tie-hu FAN. Multi-focus image fusion based on support vector machines and window gradient [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 227-236.
[5] Yuan-li GU, Yuan ZHANG, Xiao-ping RUI, Wen-qi LU, Meng LI, Shuo WANG. Short⁃term traffic flow prediction based on LSSVMoptimized by immune algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1852-1857.
[6] Hong-wei ZHAO,Ming-zhao LI,Jing LIU,Huang-shui HU,Dan WANG,Xue-bai ZANG. Scene classification based on degree of naturalness and visual feature channels [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1668-1675.
[7] Yang LU,Shi-gang WANG,Wen-ting ZHAO,Yan ZHAO. Facial expression recognition based on separability assessment of discrete Shearlet transform [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1715-1725.
[8] Jin⁃gang ZHAO,Ming ZHANG,Yu⁃lin ZHAN,Ming⁃zhi XIE. Damage criterion of reinforced concrete pier based on plastic strain energy density [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(4): 1124-1133.
[9] Jun CHEN,Qi⁃feng ZHANG,Ai⁃qun ZHANG,Du⁃si CAI. In⁃situ autonomous observation method based onhadal fish recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 953-962.
[10] LIU Zhe, XU Tao, SONG Yu-qing, XU Chun-yan. Image fusion technology based on NSCT and robust principal component analysis model with similar information [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1614-1620.
[11] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[12] KUI Hai-lin, BAO Cui-zhu, LI Hong-xue, LI Ming-da. Idling time prediction method based on least square support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1360-1365.
[13] TIAN Wei-jun, WANG Ji-yue, LI Ming, ZHANG Xing-wang, ZHANG Yong, CONG Qian. Observation of locomotion of water strider towards water strider robot [J]. 吉林大学学报(工学版), 2018, 48(3): 812-820.
[14] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[15] CAI Zhen-nao, LYU Xin-en, CHEN Hui-ling. Prediction model of somatization disorder based on an oppositional bacterial foraging optimization based support vector machine [J]. 吉林大学学报(工学版), 2018, 48(3): 936-942.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!