Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 524-532.doi: 10.13229/j.cnki.jdxbgxb.20221176
Xiao-xu LI1(),Wen-juan AN1,Ji-jie WU1,Zhen LI1,Ke ZHANG2,3,Zhan-yu MA4
CLC Number:
1 | Huang H, Zhang J, Zhang J, et al. Low-rank pairwise alignment bilinear network for few-shot fine-grained image classification[J]. IEEE Transactions on Multimedia, 2020, 23: 1666-1680. |
2 | 曹洁, 屈雪, 李晓旭. 基于滑动特征向量的小样本图像分类方法[J]. 吉林大学学报: 工学版, 2021, 51(5): 1785-1791. |
Cao Jie, Qu Xue, Li Xiao-xu. Few⁃shot image classification method based on sliding feature vectors[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(5): 1785-1791. | |
3 | Snell J, Swersky K, Zemel R. Prototypical networks for few-shot learning[C]∥Conference on Neural Information Processing Systems, Long Beach California, USA, 2017: 4080-4090. |
4 | Nguyen V N, Løkse S, Wickstrøm K, et al. Sen: a novel feature normalization dissimilarity measure for prototypical few-shot learning networks[C]∥European Conference on Computer Vision, Glasgow, UK, 2020: 118-134. |
5 | Vinyals O, Blundell C, Lillicrap T, et al. Matching networks for one shot learning[C]∥Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 3637-3645. |
6 | Zhang C, Cai Y, Lin G, et al. Deepemd: few-shot image classification with differentiable earth mover's distance and structured classifiers[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 12203-12213. |
7 | 刘萍萍, 赵宏伟, 耿庆田, 等. 基于局部特征和视皮层识别机制的图像分类[J]. 吉林大学学报: 工学版, 2011, 41(5): 1401-1406. |
Liu Ping-ping, Zhao Hong-wei, Geng Qing-tian, et al. Image classification method based on local feature and visual cortex recognition mechanism[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(5): 1401-1406. | |
8 | Huang K, Geng J, Jiang W, et al. Pseudo-loss confidence metric for semi-supervised few-shot learning[C]∥IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8671-8680. |
9 | Lin T Y, RoyChowdhury A, Maji S. Bilinear CNN models for fine-grained visual recognition[C]∥IEEE/CVF International Conference on Computer Vision, Santiago, USA, 2015: 1449-1457. |
10 | Wah C, Branson S, Welinder P, et al. The caltech-ucsd birds-200-2011 dataset[J]. California Institute of Technology, 2011, 7: 7138640. |
11 | Khosla A, Jayadevaprakash N, Yao B, et al. Novel dataset for fine-grained image categorization: Stanford dogs[J/OL]. [2022-09-12]. |
12 | Krause J, Stark M, Deng J, et al. 3D object representations for fine-grained categorization[C]∥IEEE International Conference on Computer Vision Workshops, Sydney, Australia, 2013: 554-561. |
13 | Maji S, Rahtu E, Kannala J, et al. Fine-grained visual classification of aircraft[J]. ArXiv Preprint, 2013, 7:13065151. |
14 | Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. |
15 | Liu Y, Lee J, Park M, et al. Transductive propagation network for few-shot learning[J]. arXiv E-prints, 2018, 5: 180510002. |
16 | Sung F, Yang Y, Zhang L, et al. Learning to compare: relation network for few-shot learning[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018:1199-1208. |
17 | Chen W Y, Liu Y C, Kira Z, et al. A closer look at few-shot classification[J]. arXiv E-prints, 2019, 4: 190404232. |
18 | Wu Z, Li Y, Guo L, et al. Parn: position-aware relation networks for few-shot learning[C]∥IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 6659-6667. |
19 | Zhu Y, Liu C, Jiang S. Multi-attention meta learning for few-shot fine-grained image recognition[C]∥Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence Main track, Yokohama, Japan, 2020: 1090-1096. |
20 | Li X, Wu J, Sun Z, et al. BSNet: bi-similarity network for few-shot fine-grained image classification[J]. IEEE Transactions on Image Processing, 2020, 30: 1318-1331. |
21 | Xu J, Le H, Huang M, et al. Variational feature disentangling for fine-Grained few-shot classification[C]∥IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8792-8801. |
22 | Afrasiyabi A, Lalonde J F, Gagné C. Mixture-based feature space learning for few-shot image classification[C]∥IEEE International Conference on Computer Vision, Montreal, Canada, 2021: 9041-9051. |
23 | Ye H J, Hu H, Zhan D C, et al. Few-shot learning via embedding adaptation with set-to-set functions[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Seattle, USA, 2020: 8808-8817. |
24 | Kang D, Kwon H, Min J, et al. Relational embedding for few-shot classification[C]∥IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 8822-8833. |
25 | Finn C, Abbeel P, Lwvine S. Model-agnostic meta-learning for fast adaptation of deep networks[C]∥International Conference on Machine Learning, Sydney, Australia, 2017: 1126-1135. |
26 | Cai Q, Pan Y, Yao T, et al. Memory matching networks for one-shot image recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, USA, 2018: 4080-4088. |
27 | Li X, Wu J, Chang D, et al. Mixed attention mechanism for small-sample fine-grained image classification[C]∥Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, Lanzhou, China, 2019: 80-85. |
[1] | Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600. |
[2] | Xiao-xin GUO,Jia-hui LI,Bao-liang ZHANG. Joint segmentation of optic cup and disc based on high resolution network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2350-2357. |
[3] | Fei-fei TANG,Hai-lian ZHOU,Tian-jun TANG,Hong-zhou ZHU,Yong WEN. Multi⁃step prediction method of landslide displacement based on fusion dynamic and static variables [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1833-1841. |
[4] | Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480. |
[5] | Wei LYU,Jia-ze HAN,Jing-hui CHU,Pei-guang JING. Multi⁃modal self⁃attention network for video memorability prediction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1211-1219. |
[6] | Yan-tao TIAN,Fu-qiang XU,Kai-ge WANG,Zi-xu HAO. Expected trajectory prediction of vehicle considering surrounding vehicle information [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 674-681. |
[7] | Gui-xia LIU,Yu-xin TIAN,Tao WANG,Ming-rui MA. Pancreas segmentation algorithm based on dual input 3D convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3565-3572. |
[8] | Jing-hong LIU,An-ping DENG,Qi-qi CHEN,Jia-qi PENG,Yu-jia ZUO. Anchor⁃free target tracking algorithm based on multiple attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3518-3528. |
[9] | Sheng JIANG,Peng-lang WANG,Zhi-ji DENG,Yi-ming BIE. Image fusion algorithm for traffic accident rescue based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3472-3480. |
[10] | Ji-hong OUYANG,Ze-qi GUO,Si-guang LIU. Dual⁃branch hybrid attention decision net for diabetic retinopathy classification [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 648-656. |
[11] | Xian-tong LI,Wei QUAN,Hua WANG,Peng-cheng SUN,Peng-jin AN,Yong-xing MAN. Route travel time prediction on deep learning model through spatiotemporal features [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 557-563. |
[12] | Xiao⁃lei CHEN,Yong⁃feng SUN,Ce LI,Dong⁃mei LIN. Stable anti⁃noise fault diagnosis of rolling bearing based on CNN⁃BiLSTM [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 296-309. |
[13] | Da-ke ZHOU,Chao ZHANG,Xin YANG. Self-supervised 3D face reconstruction based on multi-scale feature fusion and dual attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2428-2437. |
[14] | Jie CAO,Xue QU,Xiao-xu LI. Few⁃shot image classification method based on sliding feature vectors [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1785-1791. |
[15] | De-xing WANG,Ruo-you WU,Hong-chun YUAN,Peng GONG,Yue WANG. Underwater image restoration based on multi-scale attention fusion and convolutional neural network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1396-1404. |
|