Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (2): 516-523.doi: 10.13229/j.cnki.jdxbgxb.20221340
Xiong-fei LI(),Zi-xuan SONG,Rui ZHU,Xiao-li ZHANG
CLC Number:
1 | Luo H, Liu C, Wu C, et al. Urban change detection based on Dempster-Shafer theory for multitemporal very high-resolution imagery[J]. Remote Sensing, 2018, 10(7): 10070980. |
2 | Lv Z, Liu T, Wan Y, et al. Post-processing approach for refining raw land cover change detection of very high-resolution remote sensing images[J]. Remote Sensing, 2018, 10(3): 10030472. |
3 | Willis K S. Remote sensing change detection for ecological monitoring in United States protected areas[J]. Biological Conservation, 2015, 182: 233-242. |
4 | Hussain M, Chen D, Cheng A, et al. Change detection from remotely sensed images: from pixel-based to object-based approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80: 91-106. |
5 | Deng J S, Wang K, Deng Y H, et al. PCA‐based land‐use change detection and analysis using multitemporal and multisensor satellite data[J]. International Journal of Remote Sensing, 2008, 29(16): 4823-4838. |
6 | Nielsen A A, Conradsen K, Simpson J J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: new approaches to change detection studies[J]. Remote Sensing of Environment, 1998, 64(1): 1-19. |
7 | Malila W A. Change vector analysis: an approach for detecting forest changes with Landsat[C]∥6th Proceedings of the Society of Photo-Optical Instrumentation Engineers, Lafeyette, USA, 1980: 326-336. |
8 | 慕彩红, 霍利利, 刘逸, 等. 基于小波融合和PCA-核模糊聚类的遥感图像变化检测[J]. 电子学报, 2015, 43(7): 1375-1381. |
Mu Cai-hong, Huo Li-li, Liu Yi, et al. Change detection for remote sensing images based on wavelet fusion and PCA-Kernel fuzzy clustering[J]. Acta Electronica Sinica, 2015, 43(7): 1375-1381. | |
9 | Canty M J, Nielsen A A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation[J]. Remote Sensing of Environment, 2008, 112(3): 1025-1036. |
10 | Shi W, Zhang M, Zhang R, et al. Change detection based on artificial intelligence: State-of-the-art and challenges[J]. Remote Sensing, 2020, 12(10): 12101688. |
11 | Daudt R C, Le Saux B, Boulch A. Fully convolutional siamese networks for change detection[C]∥ 25th IEEE International Conference on Image Processing, Athens, Greece, 2018: 4063-4067. |
12 | Fang S, Li K, Shao J, et al. SNUNet-CD: a densely connected siamese network for change detection of VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. |
13 | Peng D, Zhang Y, Guan H. End-to-end change detection for high resolution satellite images using improved UNet++[J]. Remote Sensing, 2019, 11(11): 11111382. |
14 | Chen H, Shi Z. A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J]. Remote Sensing, 2020, 12(10): 12101662. |
15 | Peng X, Zhong R, Li Z, et al. Optical remote sensing image change detection based on attention mechanism and image difference[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 59(9): 7296-7307. |
16 | 赵亚慧, 杨飞扬, 张振国, 等. 基于强化学习和注意力机制的朝鲜语文本结构发现[J]. 吉林大学学报: 工学版, 2021, 51(4): 1387-1395. |
Zhao Ya-hui, Yang Fei-yang, Zhang Zhen-guo, et al. Korean text structure discovery based on reinforcement learning and attention mechanism[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1387-1395. | |
17 | 周大可, 张超, 杨欣. 基于多尺度特征融合及双重注意力机制的自监督三维人脸重建[J]. 吉林大学学报: 工学版, 2022, 52(10): 2428-2437. |
Zhou Da-ke, Zhang Chao, Yang Xin. Self-supervised 3D face reconstruction based on multi-scale feature fusion and dual attention mechanism[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(10): 2428-2437. | |
18 | Jiang H, Hu X, Li K, et al. PGA-SiamNet: pyramid feature-based attention-guided Siamese network for remote sensing orthoimagery building change detection[J]. Remote Sensing, 2020, 12(3): 12030484. |
19 | Song K, Jiang J. AGCDetNet: an attention-guided network for building change detection in high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4816-4831. |
20 | Ding Q, Shao Z, Huang X, et al. DSA-Net: a novel deeply supervised attention-guided network for building change detection in high-resolution remote sensing images[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 105: 102591. |
21 | Woo S, Park J, Lee J Y, et al. Cbam: convolutional block attention module[C]∥Proceedings of the European Conference on Computer Vision, Munich, Germany, 2018: 3-19. |
22 | Ji S, Wei S, Lu M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(1): 574-586. |
[1] | Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332. |
[2] | Chun-hua WANG,En-ze LI,Min XIAO. Object detection in high-resolution remote sensing images based on multi-feature fusion and twin attention network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 240-250. |
[3] | Yue-lin CHEN,Zhu-cheng GAO,Xiao-dong CAI. Long text semantic matching model based on BERT and dense composite network [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 232-239. |
[4] | Guang HUO,Da-wei LIN,Yuan-ning LIU,Xiao-dong ZHU,Meng YUAN,Di GAI. Lightweight iris segmentation model based on multiscale feature and attention mechanism [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2591-2600. |
[5] | Zhi-dan CAI,Ming FANG,Zhe LI,Jia-lu XU. Blind remote sensing image deblurring algorithm based on Gaussian curvature and reweighted graph total variation [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2649-2658. |
[6] | Xiao-jun JIN,Yan-xia SUN,Jia-lin YU,Yong CHEN. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2421-2429. |
[7] | Qing-tian GENG,Zhi LIU,Qing-liang LI,Fan-hua YU,Xiao-ning LI. Prediction of soil moisture based on a deep learning model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2430-2436. |
[8] | Wei-tiao WU,Kun ZENG,Wei ZHOU,Peng LI,Wen-zhou JIN. Deep learning method for bus passenger flow prediction based on multi-source data and surrogate-based optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2001-2015. |
[9] | Zhen-hai ZHANG,Kun JI,Jian-wu DANG. Crack identification method for bridge based on BCEM model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1418-1426. |
[10] | Fei WU,Hao-ye NONG,Chen-hao MA. Tool wear prediction method based on particle swarm optimizationlong and short time memory model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 989-997. |
[11] | Wen-li JI,Zhong TIAN,Jing CHAI,Ding-ding ZHANG,Bin WANG. Prediction of water⁃flowing height in fractured zone based on distributed optical fiber and multi⁃attribute fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1200-1210. |
[12] | Ke HE,Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO. Wheel odometry error prediction model based on transformer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 653-662. |
[13] | Chun-hui LIU,Si-chang WANG,Ce ZHENG,Xiu-lian CHEN,Chun-lei HAO. Obstacle avoidance planning algorithm for indoor navigation robot based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3558-3564. |
[14] | Xiao-qi LYU,Hao LI,Yu GU. Adaptive blur and deduplication algorithm for digital media image based on wavelet domain [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3201-3206. |
[15] | Jun WANG,Hua-lin WANG,Bo-wen HUANG,Qiang FU,Jun LIU. Intrusion detection for industrial internet of things based on federated learning and self-attention [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3229-3237. |
|