Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (9): 2557-2567.doi: 10.13229/j.cnki.jdxbgxb.20221390

Previous Articles    

Application of dynamic load allowance test method of simply supported girder bridge based on suspension hammer system

Yu-xin XUE1(),Yong-jun ZHOU1(),Ye-lu WANG2,Kai-xiang FAN3,Yu ZHAO1   

  1. 1.School of Highway,Chang'an University,Xi'an 710064,China
    2.College of Civil Engineering,Qingdao University of Technology,Qingdao 266033,China
    3.Hubei Communications Planning and Design Institute Co. ,Ltd. ,Wuhan 430051,China
  • Received:2022-11-01 Online:2024-09-01 Published:2024-10-28
  • Contact: Yong-jun ZHOU E-mail:2021021017@chd.edu.cn;zyj@chd.edu.cn

Abstract:

To explore the application of hammer system in bridge dynamic test, simply supported bridge with standard span were selected. Research on dynamic load allowance (DLA) test of simply supported bridge were carried out, adopting theoretical derivation, numerical simulation and experimental verification. Firstly, the vehicle-bridge-suspension system coupled vibration theoretical equation was derived according to d'Alembert principle. Then, the analysis program was compiled based on ANSYS to obtain the DLAs of suspension hammer method. The influence of suspension length, wire diameter, elastic modulus and suspension hammer mass on the accuracy of DLA were discussed, comparing with the results of scaffolding method. Furthermore, combining with response surface methodology, the suggested value of suspension hammer system parameters about different bridges types were proposed. Finally, a 30 m simply supported box girder bridge was tested under dynamic load. Dynamic deflection of the bridge was tested by scaffolding and suspension hammer method to verify the suggested value. Results demonstrated that there is a significant interaction between wire diameter and suspension hammer mass. To satisfy the difference of less than 5% between deflection DLA measured by suspension hammer and scaffolding method, the optimal values of wire diameter and suspension hammer mass should increase with wire length.

Key words: bridge engineering, simply supported girder bridge, dynamic load allowance, dynamic deflection, suspension hammer system

CLC Number: 

  • U44

Fig.1

Suspension hammer method"

Table 1

Main parameters of simply supported girder bridge"

桥型跨径/m截面面积/m2质量m/kg截面惯性矩Iyy/m4
简支T梁桥200.754 01 922.328 50.190 4
250.806 02 054.908 10.276 4
300.889 82 498.050 10.538 8
350.979 82 268.611 50.891 2
401.072 02 733.021 10.909 5
简支箱梁桥201.112 82 837.090 10.186 4
251.209 03 082.195 20.279 0
301.307 63 333.571 90.396 0
351.634 64 167.321 80.589 7
401.761 14 489.726 50.781 9
简支空心板桥100.391 8998.878 40.016 1
130.426 81 088.109 50.024 5
160.514 31 311.187 30.037 5
200.527 31 344.330 30.055 2

Fig.2

Vehicle-bridge-hammer coupled system"

Fig.3

Displacement response of simply supported girder bridge midspan"

Fig.4

Influence of wire diameter on coupled DLA"

Fig.5

Influence of wire elastic modulus on coupled DLA"

Fig.6

Influence of hammer mass on coupled DLA"

Table 2

Variables and levels in box behnken design"

响应面分析区间一响应面分析区间二
自变量取值BBD水平自变量取值BBD水平
A:铁丝长度/m5~305,17.5,30A:铁丝长度/m5~305,17.5,30
B:铁丝直径/mm0.1~10.1,0.55,1B:铁丝直径/mm1~2.51,1.75,2.5
C:悬锤质量/kg1~21,1.5,2C:悬锤质量/kg2~42,3,4

Fig.7

Three-dimensional surface of wire diameter and hammer mass interaction effect"

Table 3

Parameter selection of suspension system for simply supported girder bridges"

桥型跨径/m铁丝长度/m铁丝直径/ mm悬锤质量/ kg跨径/m铁丝长度/ m铁丝直径/ mm悬锤质量/kg跨径/m铁丝长度/ m铁丝直径/ mm悬锤质量/ kg
简支空心板桥1050.51.0~1.21350.51.21650.52.0
100.61.2100.61.2100.61.0
150.81.4151.01.2150.81.2
201.01.5201.21.4201.01.4
251.22.0251.41.5251.21.5
301.52.5301.51.8301.51.6
2050.32.0
100.41.5
150.51.5~1.6
200.51.8
250.72.0
300.82.0
简支T梁桥2050.51.52550.51.53050.51.5
100.71.6100.81.6100.61.5
151.01.8150.81.6150.81.6~1.8
201.22.0201.01.8201.01.8~2.0
251.52.2251.02.0251.22.0
301.62.5301.22.0301.52.0
3550.51.54052.01.5
100.61.6101.51.6
150.81.8151.22.0~2.4
201.02.0201.02.2~2.4
251.22.0250.82.5
301.52.4~2.5300.52.5
简支箱梁桥2050.61.52550.51.53050.51.5
100.71.6100.61.6100.71.6
150.9/1.01.8~2.0150.81.6150.81.8
201.02.0201.01.6~1.8201.02.0
251.42.0251.52.0251.22.0
301.52.0301.52.5301.52.4
3550.71.44051.01.5
100.9/1.01.5101.2~1.41.6
151.21.5151.51.8
201.51.6201.82.0
251.62.0~2.2252.02.2
301.82.2302.02.5

Fig.8

Field test"

Table 4

1+μ comparison of two test method"

车速/(km·h-1①支架法(1+μ②悬锤法(1+μc(①~②)/①)/(%)差值平 均值/%
201.1711.0807.824.99
301.0731.0066.25
401.0851.0414.06
501.1471.0815.76
601.1021.113-1.06
1 中华人民共和国交通运输部. 2023年交通运输行业发展统计公报[N]. 中国交通报, 2024-6-18.
Ministry of Transport of the People's Republic of China.Ministry of transport statistical bulletin on the development of transportation industry in 2023[N]. China Transport News, 2024-06-18.
2 .公路桥梁荷载试验规程 [S].
3 周勇军, 蔡军哲, 石雄伟, 等. 基于加权法的桥梁冲击系数计算方法[J]. 交通运输工程学报, 2013, 13(4): 29-36.
Zhou Yong-jun, Cai Jun-zhe, Shi Xiong-wei, et al. Computing method of bridge impact factor based on weighted method[J]. Journal of Traffic and Transportation Engineering, 2013, 13(4): 29-36.
4 周勇军, 薛宇欣, 李冉冉,等. 桥梁冲击系数理论研究和应用进展[J]. 中国公路学报, 2021, 34(4): 31-50.
Zhou Yong-jun, Xue Yu-xin, Li Ran-ran, et al. State-of-the-art of theory and applications of bridge dynamic load allowance[J]. China Journal of Highway and Transport, 2021, 34(4): 31-50.
5 熊先才, 章鹏, 苻欲梅, 等. 光电液位传感器及其在桥梁挠度自动测量中的应用[J]. 地震工程与工程振动, 2006, 26(4): 260-264.
Xiong Xian-cai, Zhang Peng, Fu Yu-mei, et al. Optoelectronic liquid-level sensor and its application for automatically measuring bridge deflection[J]. Earthquake Engineering and Engineering Vibration, 2006,26(4):260-264.
6 邵新星, 黄金珂, 员方, 等. 基于视觉的桥梁挠度测量方法与研究进展[J]. 实验力学, 2021, 36(1):29-42.
Shao Xin-xing, Huang Jin-ke, Yuan Fang, et al. Measurement method and recent progress of vision-based deflection measurement of bridges[J]. Journal of Experimental Mechanics, 2021,36(1):29-42.
7 Huang J, Shao X X, Yang F J. Measurement method and recent progress of vision-based deflection measurement of bridges: a technical review[J]. Optical Engineering, 2022, 61(7): No. 070901.
8 蓝章礼,杨小帆.非接触式张力线桥梁挠度测量系统[J].仪器仪表学报, 2008, 29(5): 1058-1062.
Lan Zhang-li, Yang Xiao-fan. Non-contact bridge deflection measurement system using weighted- streched-wire[J]. Chinese Journal of Scientific Instrument, 2008, 29(5): 1058-1062.
9 王业路, 周勇军, 高徐军, 等. 基于预紧弹簧系统的桥梁挠度冲击系数量测方法[J]. 中国公路学报, 2022, 35(10): 172-182.
Wang Ye-lu, Zhou Yong-jun, Gao Xu-jun, et al. Measurement method of the bridge deflection dynamic load allowance based on preloaded spring system[J]. China Journal of Highway and Transport, 2022, 35(10): 172-182.
10 Dong Y, Wang J Q, Ren W X, et al. A plastic optical fiber sensing system for bridge deflection measurement[J]. Sensors,2020,20(2):No.s20020480.
11 Alipour M, Washlesky S J, Harris D K. Field development and laboratory evaluation of 2D digital image correlation for deflection sensing in complex environments[J]. Journal of Bridge Engineering, 2019,24(4): No. 04019010.
12 Garg P, Moreu F, Ozdagli A, et al. Noncontact dynamic displacement measurement of structure using a moving laser doppler vibrometer[J]. Journal of Bridge Engineering, 2019, 24 (9): No.4019089.
13 Nie G Y, Bodda S S, Gupta A. Computer-vision- based vibration tracking using a digital camera: a sparse-optical- flow-based target tracking method[J]. Sensors, 2022, 22(18): No.s22186869.
14 Cha G C, Park S, Oh T. A terrestrial lidar-based detection of shape deformation for maintenance of bridge structure[J]. Journal of Construction Engineering and Management, 2019, 145(12): No.4019075.
15 Xue M S, Yi T H, Qu C X, et al. Rapid estimation of bridge key deflection through optimized substructure impact testing[J]. Journal of Bridge Engineering,2022, 27(10): No. 4022088.
16 钟继卫, 王波, 王翔, 等. 桥梁智能检测技术研究与应用[J]. 桥梁建设, 2019, 49(): 1-6.
Zhong Ji-wei, Wang Bo, Wang Xiang, et al. Research of bridge intelligent inspection technology and application[J]. Bridge Construction, 2019,49(Sup.1):1-6.
17 李万恒, 申林, 王少鹏, 等. 基于多阶段分区域动力测试的桥梁结构损伤评估[J]. 吉林大学学报: 工学版, 2019, 49(3): 773-780.
Li Wan-heng, Shen Lin, Wang Shao-peng, et al. Damage assessment of bridge construction on multi-stage subregion mobile test[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 773-780.
18 Yang D, Zhang S Q, Wang S, et al. Real-time illumination adjustment for video deflectometers[J]. Structure Control & Health Monitoring, 2022,29(5):No.e2930.
19 王磊, 陈顺超, 袁胜涛, 等. 基于悬挂吊锤的桥梁动挠度测试[J]. 科学技术与工程, 2021, 21(21): 9108-9115.
Wang Lei, Chen Shun-chao, Yuan Sheng-tao, et al. Test of bridge dynamic deflection based on suspended hammer[J]. Science Technology and Engineering, 2021, 21(21): 9108-9115.
20 周勇军, 薛宇欣, 高徐军, 等. 基于模态叠加法的公路简支梁桥动力放大系数研究[J]. 交通运输工程学报, 2023, 23(6): 146-155.
Zhou Yong-jun, Xue Yu-xin, Gao Xu-jun, et al. Research on dynamic amplification factor of highway simply supported girder bridge based on modal superposition method[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 146-155.
21 周勇军, 赵洋, 赵煜, 等. 基于动载试验荷载效率的简支梁桥冲击系数研究[J]. 振动与冲击, 2021, 40(20): 207-216.
Zhou Yong-jun, Zhao Yang, Zhao Yu, et al. A study on dynamic load allowance of a simply supported girder bridge based on load efficiency of a dynamic load test[J]. Journal of Vibration and Shock,2021,40(20): 207-216.
22 韩智强, 谢刚, 周勇军, 等. 曲线桥梁车桥耦合振动数值分析方法[J].吉林大学学报: 工学版, 2023, 53(2): 515-522.
Han Zhi-qiang, Xie Gang, Zhou Yong-jun, et al. Numerical analysis method of vehicle-bridge coupling vibration of curved bridge[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 515-522.
23 沈火明, 肖新标. 求解车桥耦合振动问题的一种数值方法[J]. 西南交通大学学报, 2003, 38(6): 658-662.
Shen Huo-ming, Xiao Xin-biao. Numerical method for vehicle bridge coupled vibrations[J]. Journal of Southwest Jiaotong University, 2003,38(6):658-662.
24 Won K L, Hae D P. Chaotic dynamics of a harmonically excited spring-pendulum system with internal resonance[J]. Nonlinear Dynamics, 1997, 14(3): 211 -229.
25 姚玉权, 仰建岗, 高杰, 等. 基于性能-费用模型的厂拌再生沥青混合料优化设计[J]. 吉林大学学报:工学版, 2022, 52(3): 585-595.
Yao Yu-quan, Yang Jian-gang, Gao Jie, et al. Optimal design on recycled hot-mix asphalt mixture based on performance-cost model[J]. Journal of Jilin University (Engineering and Technology Edition), 2022,52(3): 585-595.
[1] Bao-dong LIU,Fang LI,Xiao-xi WANG,Meng GAO. Flexural stiffness and bearing capacity of corrugated steel plate composite structures reinforced by concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2502-2510.
[2] Xue-lian GUO,Wan-shui HAN,Tao WANG,Kai ZHOU,Xiu-shi ZHANG,Shu-ying ZHANG. Assessment method of resistant overturning stability safety factors of curved bridge under customized transport vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(8): 2229-2237.
[3] Lin XIAO,Huan-bo WEI,Xing WEI,Zhi-rui KANG. Numerical analysis on cracking behavior of concrete slab due to corrosion expansion of stud connector in steel-concrete composite beam [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1958-1965.
[4] Chun-lei ZHANG,Chang-yu SHAO,Qing-tian SU,Chang-yuan DAI. Experimental on positive bending behaviour of composite bridge decks with steel-fiber-reinforced concrete and longitudinal bulb-flat ribs [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1634-1642.
[5] Han-hui HUANG,Kang-ming CHEN,Qing-xiong WU. Flexural behavior of composite continuous girders with concrete-filled steel tubular truss chords [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1665-1676.
[6] Chang-jiang SHAO,Hao-meng CUI,Qi-ming QI,Wei-lin ZHUANG. Longitudinal seismic mitigation of near⁃fault long⁃span RC soft⁃lighten arch bridge based on viscous damper [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1355-1367.
[7] Qiu ZHAO,Peng CHEN,Yu-wei ZHAO,Ao YU. Overall mechanical performance of jointless bridges with arch structure behind abutment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1016-1027.
[8] Hong ZHANG,Zhi-wei ZHU,Tian-yu HU,Yan-feng GONG,Jian-ting ZHOU. Bridge bolt defect identification method based on improved YOLOv5s [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(3): 749-760.
[9] Zhi-qiang HAN,Gang XIE,Ya-juan ZHUO,Zuo-long LUO,Hua-teng LI. Vibration response of continuous girder bridge based on wheel⁃deck coherent excitation [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 436-444.
[10] Guo-jun YANG,Ya-hui QI,Xiu-ming SHI. Review of bridge crack detection based on digital image technology [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 313-332.
[11] Guo-jin TAN,Ji OU,Yong-ming AI,Run-chao YANG. Bridge crack image segmentation method based on improved DeepLabv3+ model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 173-179.
[12] Guan-xu LONG,Xiu-shi ZHANG,Gong-feng XIN,Tao WANG,Gan YANG. Bridge weigh-in-motion combined with machine version [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 188-197.
[13] Xing WEI,Ya-jie GAO,Zhi-rui KANG,Yu-chen LIU,Jun-ming ZHAO,Lin XIAO. Numerical simulation of residual stress field of stud girth weld in low temperature environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 198-208.
[14] Ran AN,You-zhi WANG. Shear properties of shear stud connectors under combined tension and shear loading [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2554-2562.
[15] Xin-dai ZUO,Jin-quan ZHANG,Shang-chuan ZHAO. Fatigue stiffness degradation and life prediction method of in⁃service concrete T⁃beams [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2563-2572.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!