Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 3027-3036.doi: 10.13229/j.cnki.jdxbgxb.20221555

Previous Articles    

Brake control algorithm for virtually coupled trains based on multi vehicle cooperation

Lei ZHANG1(),Zi-mu LI2,Yong-yao YAN2,Fei DOU3,Hong-jie LIU1()   

  1. 1.School of Electronic and Information Engineering,Beijing Jiaotong University,Beijing 100044,China
    2.Traffic Control Technology Co. ,Ltd. ,Beijing 100070,China
    3.Beijing Mass Transit Railway Operation Co. ,Ltd. ,Beijing 100044,China
  • Received:2022-12-06 Online:2024-10-01 Published:2024-11-22
  • Contact: Hong-jie LIU E-mail:20111082@bjtu.edu.cn;hjliu2@bjtu.edu.cn

Abstract:

A unified deceleration is usually adopted among all train units when an emergency occurs during the operation of a virtually-coupled train. Affected by the actual operation conditions, safety risk is likely to be increased under the control of uneven spacing between train units. To solve this problem, this paper designs a multi-vehicle cooperation-based brake control algorithm. Firstly, the emergency braking scenario of a virtually coupled train is analyzed, and total risk coefficient is defined to evaluate the safety risk. Then, with the goal of minimizing the total risk coefficient, a specific algorithm is designed to calculate the train braking rate of each unit according to the actual working conditions of the virtually-coupled train. Finally, simulation results show that the algorithm has lower total risk coefficient and fewer collision counts, which proves the correctness and effectiveness of the proposed multi-vehicle cooperation-based brake control algorithm.

Key words: traffic information engineering & control, urban rail transit, virtual coupling, multi-vehicle cooperation, brake control

CLC Number: 

  • U284

Table 1

Parameter selection"

类 别参 数取 值
列车参数车长/L68 m
最大制动率/ak_max0.85~1.0 m/s2
制动响应时间/τk0.8~1 s
虚拟编组运行参数安全边界/desafe6 m
领车速度/v140、60、80 km/h
跟随列车速度/vkv1 -1)~(v1 +1) km/h
列车初始间隔/dk

10~20 m(40 km/h时)

20~35 m(60 km/h时)

38~56 m(80 km/h时)

Table 2

Simulation results with pace car speed of 40 km/h"

列车初始

间隔/m

协同制动 碰撞次数最大制动 碰撞次数最小制动 碰撞次数

协同制动平均

总风险系数

最大制动平均

总风险系数

最小制动平均

总风险系数

1038137460.5230.8330.693
121356110.4000.5930.451
1401690.3240.4380.359
160120.2650.3030.281
180200.2350.2630.242
200000.2080.2200.214

Table 3

Simulation results with pace car speed of 60 km/h"

列车初始

间隔/m

协同制动 碰撞次数最大制动 碰撞次数最小制动 碰撞次数

协同制动平均

总风险系数

最大制动平均

总风险系数

最小制动平均

总风险系数

2038151700.2431.6630.379
231067270.2020.3400.274
26420100.1760.4340.200
3005100.1550.1760.171
330100.1340.1520.142
350000.1200.1300.128

Table 4

Simulation results with pace car speed of 80 km/h"

列车初始

间隔/m

协同制动 碰撞次数最大制动 碰撞次数最小制动 碰撞次数

协同制动平均

总风险系数

最大制动平均

总风险系数

最小制动平均

总风险系数

381280230.1190.1990.147
41737200.1080.1800.155
44325130.1010.1470.119
470320.0930.1730.119
520100.0820.0930.087
560000.0750.0840.079

Table 5

Parameter selection"

类 别参 数取 值
列车参数车长/L68 m
虚拟编组各列车单元最大制动率ak_max0.951、0.995、0.860、0.921、0.860 m/s2
虚拟编组各列车单元制动响应时间τk0.828、0.940、0.812、0.970、0.922 s
虚拟编组运行参数安全边界desafe6 m
虚拟编组各列车单元速度vi60、60.224、59.540、59.591、59.954 km/h
虚拟编组各列车单元列车初始间隔dk25.231、23.436、26.792、25.547 m

Fig.1

Simulation results of maximum braking parking"

Fig.2

Simulation results of minimum braking parking"

Fig.3

Simulation results of VC uniform parking"

1 禹丹丹, 韩宝明, 张琦, 等. 基于灵活虚拟编组的轨道交通列车开行方案优化方法[J]. 北京交通大学学报, 2015, 39(6): 21-31.
Yu Dan-dan, Han Bao-ming, Zhang Qi, et al. Optimization method for train plan of urban rail transit based on the flexible length of train formation[J]. Journal of Beijing Jiaotong University, 2015, 39(6): 21-31.
2 刘宏杰, 唐涛, 张艳兵, 等. 城轨虚拟编组关键性能指标及技术探讨[J]. 都市快轨交通, 2023, 36(1):28-35.
Liu Hong-jie, Tang Tao, Zhang Yan-bing, et al. Discussion on the key performance indicators and technologies of virtual coupling in metros[J]. Urban Rapid Rail Transit, 2023, 36(1): 28-35.
3 Di Meo C, Di Vaio M, Flammini F, et al. ERTMS/ETCS virtual coupling: proof of concept and numerical analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(6): 2545-2556.
4 Quaglietta E, Wang M, Goverde R M P. A multi-state train-following model for the analysis of virtual coupling railway operations[J]. Journal of Rail Transport Planning & Management, 2020, 15: No.100195.
5 Tang T, Huang Y N, Yin J T.Chinese metro train control system(CMTCS): from automatic to autonomous[J]. IRSE News, 2022, 289: 3-7.
6 Shift2Rail Joint Undertaking. Shift2Rail Annual Activity Report 2021[R]. Luxembourg: Publications Office of the European Union, 2021.
7 谢正光, 魏运. 新时代我国城市轨道交通运营新模式探讨[J]. 都市快轨交通, 2022, 35(1): 54-59.
Xie Zheng-guang, Wei Yun. New modes of urban rail operations in the new era of China[J]. Urban Rapid Rail Transit, 2022, 35(1): 54-59.
8 魏运, 白文飞, 李宇杰.智慧地铁需求分析及功能规划研究[J].都市快轨交通, 2020, 33(1): 40-48.
Wei Yun, Bai Wen-fei, Li Yu-jie. Development demand and function planning of smart metro[J]. Urban Rapid Rail Transit, 2020, 33(1): 40-48.
9 Bock U, Bikker G. Design and development of a future freight train concept-"virtually coupled train formations"[J]. IFAC Proceedings Volumes, 2000, 33(9): 395-400.
10 Ning B. Absolute braking and relative distance braking-train operation control modes in moving block systems[J]. WIT Transactions on The Built Environment, 1998, 37:991-1001.
11 荀径, 陈明亮, 宁滨, 等. 虚拟重联条件下地铁列车追踪运行性能衡量[J]. 北京交通大学学报, 2019, 43(1): 96-103.
Xun Jing, Chen Ming-liang, Ning Bin, et al. Train tracking performance measurement under virtual coupling in subway[J]. Journal of Beijing Jiaotong University, 2019, 43 (1): 96-103.
12 Zhou Q, Zhang C Y, Bao F, et al. The safety braking protection model of virtually coupled train platoon in subway[C]//2020 10th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems(CYBER), Xi'an, China, 2020:No.9278960.
13 吴萌岭, 马天和, 田春, 等. 列车制动技术发展趋势探讨[J].中国铁道科学, 2019, 40(1): 134-144.
Wu Meng-ling, Ma Tian-he, Tian Chun, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144.
14 刘豫湘, 方长征, 万建兵, 等. 列车制动系统技术现状及发展趋势[J]. 电力机车与城轨车辆, 2014,37(5): 1-4.
Liu Yu-xiang, Fang Chang-zheng, Wan Jian-bing, et al. Technology status and development trend of train braking system[J]. Electric Locomotives & Mass Transit Vehicles, 2014, 37(5): 1-4.
15 Wang J, Liu H, Tang T, et al. A space-time interval based protection method for virtual coupling[C]∥2022 China Automation Congress(CAC), Xiamen, China, 2022: 4906-4911.
16 Quaglietta E. Deliverable D4.1 market potential and operational scenarios for virtual coupling[R/OL].[2019-07-29]..
17 Stickel S, Schenker M, Dittus H, et al. Technical feasibility analysis and introduction strategy of the virtually coupled train set concept[J]. Scientific Reports, 2022, 12(1): 4248.
18 穆俊斌, 孙景辉. 某型城际动车组制动力分级控制方式[J]. 电子世界, 2014(10): 339-339.
Mu Jun-bin, Sun Jing-hui. Grading control mode of braking force for a certain type of intercity multiple unit[J].Electronics World, 2014(10): 339-339.
19 侯德藻. 汽车纵向主动避撞系统的研究[D]. 北京: 清华大学车辆与运载学院, 2004.
Hou De-zao. Study on vehicle forward collision avoidance system[D].Beijing:School of Vehicle and Mobility, Tsinghua University, 2004.
20 胡满江, 徐彪, 秦洪懋, 等. 基于MPC的多车纵向协同避撞算法[J]. 清华大学学报: 自然科学版,2017, 57(12): 1280-1286.
Hu Man-jiang, Xu Biao, Qin Hong-mao, et al. MPC based longitudinal coordinated collision avoidance for multiple connected vehicles[J]. Journal of Tsinghua University (Science and Technology), 2017, 57(12): 1280-1286.
21 张玮, 张树培, 罗崇恩, 等.智能汽车紧急工况避撞轨迹规划[J].吉林大学学报: 工学版, 2022, 52(7):1515-1523.
Zhang Wei, Zhang Shu-pei, Luo Chong-en, et al. Collision avoidance trajectory planning for intelligent vehicles in emergency conditions[J].Journal of Jilin University (Engineering and Technology Edition),2022, 52(7): 1515-1523.
22 孟柯, 吴超仲, 陈志军, 等.人车碰撞风险识别及智能车辆控制系统[J].交通信息与安全,2016,34(6):22-29.
Meng Ke, Wu Chao-zhong, Chen Zhi-jun, et al. A system for risk identification of pedestrain-vehicular collisions and intelligent control[J]. Journal of Transport Information and Safety, 2016, 34(6): 22-29.
23 Funke J, Brown M, Erlien S M, et al. Collision avoidance and stabilization for autonomous vehicles in emergency scenarios[J]. IEEE Transactions on Control Systems Technology, 2016, 25(4): 1204-1216.
[1] Na ZHANG,Feng CHEN,Jian-po WANG,Ya-di ZHU. Recognition of travel patterns for urban rail transit passengers based on spatiotemporal sequence similarity [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2588-2599.
[2] Bo-song FAN,Chun-fu SHAO. Urban rail transit emergency risk level identification method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(2): 427-435.
[3] Jing WANG,Feng WAN,Chun-jiao DONG,Chun-fu SHAO. Modelling on catchment area and attraction intensity of urban rail transit stations [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(2): 439-447.
[4] Qing-yong WANG,Wei-qiang QU. Optimization algorithm of urban rail transit operation scheduling based on linear programming [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3446-3451.
[5] ZHAO Xue-yu, YANG Jia-qi, PENG Ya-mei. Competitive and cooperative relationship evolution mechanism between urban rail transit and traditional bus [J]. 吉林大学学报(工学版), 2017, 47(3): 756-764.
[6] YAO Xiang-ming, ZHAO Peng, YU Dan-dan. Dynamic origin-destination matrix estimation for urban rail transit based on averaging strategy [J]. 吉林大学学报(工学版), 2016, 46(1): 92-99.
[7] CAO Yang, ZHAO Shu-zhi, TIAN Qing-fei. Urban rail transit subsidy policy based on maximum welfare [J]. , 2012, (03): 618-622.
[8] ZHAO Shu-zhi, CAO Yang, TIAN Qing-fei. Urban rail transit scheduling decision based on information fusion [J]. 吉林大学学报(工学版), 2011, 41(增刊1): 85-88.
[9] CAO Shou-hua,YUAN Zhen-zhou,ZHAO Dan. Queuing mechanism of passengers at exit stairs of urban rail transit [J]. 吉林大学学报(工学版), 2009, 39(06): 1463-1468.
[10] Yang Li-ya;Shao Chun-fu . Integrated forecasting model for real estate price along urban rail transit based on BP neural network and Markov chain [J]. 吉林大学学报(工学版), 2008, 38(03): 514-0519.
[11] Zhao Jian,Li Jing,Song Da-feng,Zhang Jia-cai,Li You-de . Brake control algorithm of traction control system based
on wheel acceleration threshold
[J]. 吉林大学学报(工学版), 2007, 37(02): 263-0268.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!