Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 2922-2929.doi: 10.13229/j.cnki.jdxbgxb.20221576

Previous Articles    

Sampling and quantitative analysis method of emissions from crumb rubber modified asphalt

Hong-zhou ZHU1,2(),Chun-li SU2,Nai-peng TANG1,2(),Jun-yao WEI2,Hong-jun SUN3   

  1. 1.National & Local Joint Engineering Research Center of Transportation and Civil Engineering Materials,Chongqing Jiaotong University,Chongqing 400074,China
    2.School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China
    3.Hebei Transportation Investment Resources Development and Utilization Co. Ltd. ,Shijiazhuang 050090,China
  • Received:2022-12-09 Online:2024-10-01 Published:2024-11-22
  • Contact: Nai-peng TANG E-mail:zhuhongzhouchina@cqjtu.edu.cn;tnp@cqjtu.edu.cn

Abstract:

Crumb rubber modified asphalt(CRMA) has technical advantages in terms of cost saving, performance enhancement, etc. However, CRMA produces a large amount of harmful gases during pavement construction, and it is urgent to quantitatively analyze the emissions of CRMA. In this paper, a method for sampling CRMA emissions was developed, and gas chromatograph-mass spectrometer (GC-MS) with internal standard method was used to quantitatively analyze the chemical compositions of CRMA emissions. The main conclusions are as follows. The standard recovery rate is good, and there is no adsorption breakthrough during the process of emissions collection. The standard curves of different concentration range have good linear relationships. The addition of crumb rubber significantly increases the emission of benzene series, benzothiazole, trimethyl dihydroquinoline and other CRMA characteristic emissions. Compared with neat asphalt, the emission of n-alkanes from CRMA decreases. The emission of PAHs from CRMA is similar to that from neat asphalt. Naphthalene is the main component of the PAHs released from CRMA and neat asphalt.

Key words: road engineering, crumb rubber modified asphalt, characteristic emission, gas chromatograph-mass spectrometer (GC-MS), internal standard method

CLC Number: 

  • U414

Table 1

Physical property of asphalts"

软化点/℃5 ℃延度/cm针入度/0.1 mm
基质沥青46.78.776.7
改性沥青70.211.733.4

Table 2

Concentration gradient of different standard curves"

低浓度梯度高浓度梯度
苯系物0.01、0.05、0.1、0.2、0.5、1、20.5、1、2、5、10、25、50
PAHs与替代物0.01、0.05、0.1、0.2、0.5、1、20.2、0.5、1、2、5、10、25
正构烷烃0.01、0.05、0.1、0.2、0.5、1、20.5、1、2、5、10、25、50
胶粉特征排放物0.01、0.05、0.1、0.2、0.5、1、2、51、2、5、10、25、50、100

Fig.1

Gas emission collection of asphalt-desorption test"

Table 3

Summary of emission standard curve information"

待测物Rlow2Rhigh2检出限/(mg?m-3定量限/(mg?m-3保留时间/min
甲苯0.990 50.997 60.002 00.006 73.905

乙苯

对二甲苯

间二甲苯

0.998 8

0.993 5

0.003 7

0.012 2

5.764

苯乙烯0.998 70.997 50.005 10.016 96.376
邻二甲苯0.997 20.997 40.013 60.045 36.288
苯并噻唑0.999 60.994 50.006 30.021 115.626
二氢喹啉0.998 90.996 00.093 20.310 624.932
二环己基二硫化物0.999 20.999 20.344 81.149 434.962
对苯二胺0.994 80.997 60.157 90.526 340.070
2-氟联苯0.997 70.993 50.001 30.004 220.511
C80.998 90.998 90.020 30.067 64.342
C90.999 20.999 20.004 50.015 06.453
C100.999 20.999 20.001 80.006 19.153
C110.998 40.998 90.000 40.001 212.085
C120.998 50.999 00.000 40.001 214.967
C130.997 70.999 00.000 50.001 818.024
C140.995 60.999 10.001 10.003 522.664
C150.996 10.999 20.000 20.000 728.550
C160.995 70.998 60.001 00.003 330.677
C170.991 90.995 40.000 50.001 831.257
C180.996 90.997 40.000 90.002 933.055
C190.996 20.996 90.001 60.005 433.767
C200.996 20.996 90.001 10.003 534.207
C210.993 40.997 00.001 70.005 537.760
C220.995 60.997 80.002 30.007 738.692
C230.995 10.995 10.006 20.020 639.574
C240.997 50.997 50.007 40.024 740.417
C250.996 20.998 90.010 20.034 141.213
0.997 60.998 60.001 20.003 914.535
苊烯0.996 20.998 50.003 30.011 027.363
0.9970.998 70.003 90.012 927.747
0.995 50.998 80.001 90.006 330.677
0.997 20.998 90.000 70.002 431.257
0.995 50.998 90.001 80.005 934.455
荧蒽0.996 10.998 80.001 40.004 637.569
0.995 60.998 70.001 30.004 238.157
苯并[a]蒽0.993 10.995 10.002 20.007 341.123
0.993 40.997 10.002 20.007 341.248

苯并[k]荧蒽

苯并[b]荧蒽

0.995 80.992 80.034 70.115 843.608
苯并[a]芘0.993 30.9920.003 70.012 344.233

茚[1,2,3-cd]芘

二苯并[a,h]蒽

0.998 20.994 40.036 50.121 746.481
苯并[g,h,i]苝0.998 10.997 60.030 90.103 146.943

Fig.2

XAD-2 absorption tube's structure"

Fig.3

Comparison between area A's and area B's gas emission"

Table 4

Results of recovery rate and RSD"

替代物替代物掺量/μg回收率/%平均回收率/%RSD/%
样品1样品2样品3
2-氟联苯1095.4590.2099.6495.104.97
298.3396.0496.4596.941.26

Fig.4

Parallel test results of the same asphalt sample"

Fig.5

Composition of base asphalt' and CRMA's gasemission"

Fig.6

Comparison between base asphalt' and CRMA's gas emission"

1 马涛,陈葱琳,张阳,等. 胶粉应用于沥青改性技术的发展综述[J].中国公路学报,2021,34(10):1-16.
Ma Tao, Chen Cong-lin, Zhang Yang, et al. Development of using crumb rubber in asphalt modification: a review[J]. China Journal of Highway and Transport,2021, 34(10):1-16.
2 Picado-Santos L G, Capitão S D, Neves J M C. Crumb rubber asphalt mixtures: a literature review[J]. Construction and Building Materials,2020,247(3):No.118577.
3 张家伟,黄卫东,吕泉,等. TB胶粉复合SBS改性沥青及混合料的低温性能[J].建筑材料学报,2021,24(1):131-137, 152.
Zhang Jia-wei, Huang Wei-dong, Quan Lyu, et al. Low temperature performance of TB crumb rubber composite SBS modified asphalt and mixture[J]. Journal of Building Materials,2021,24(1):131-137, 152.
4 周璐,黄卫东,吕泉,等.不同改性剂对沥青黏结及抗水损害性能的影响[J].建筑材料学报,2021,24(2):377-384.
Zhou Lu, Huang Wei-dong, Quan Lyu, et al. Effects of various modifiers on the bond property and moisture damage resistance of asphalt[J]. Journal of Building Materials,2021,24(2):377-384.
5 Wagner S, Hüffer T, Klöckner P, et al. Tire wear particles in the aquatic environment—a review on generation, analysis, occurrence, fate and effects[J]. Water Research,2018,139:83-100.
6 Tang N P, Zhang Z Y, Dong R K, et al. Emission behavior of crumb rubber modified asphalt in the production process[J]. Journal of Cleaner Production,2022,340(3):1-8.
7 Nilsson P T, Ulf B, Håkan T, et al. Emissions into the air from bitumen and rubber bitumen-implications for asphalt workers' exposure[J]. Annals of Work Exposures and Health,2018,62(7):828-839.
8 崔培强. 沥青VOC分析技术及抑制方法研究[D].武汉:武汉理工大学土木工程与建筑学院,2015.
Cui Pei-qiang. Research Methodologies on the VOC emissions from bituminous materials and its inhibitor[D]. Wuhan: School of Civil Engineering and Architecture, Wuhan University of Technology,2015.
9 肖月,常郗文,董前坤,等.道路沥青材料VOCs的指纹组分及其定量分析[J].中国公路学报,2020,33(10):276-287.
Xiao Yue, Chang Xi-wen, Dong Qian-kun, et al. Fingerprint components and quantitative analysis of volatile organic compounds of asphalt materials[J]. China Journal of Highway and Transport,2020,33(10):276-287.
10 Yang X, You Z P, Perram D, et al. Emission analysis of recycled tire rubber modified asphalt in hot and warm mix conditions[J]. Journal of Hazardous Materials,2018,365(5):942-951.
11 Zhang J W, Chen M Z, Wu S P, et al. Evaluation of VOCs inhibited effects and rheological properties of asphalt with high-content waste rubber powder[J]. Construction and Building Materials,2021,300:No.124320.
12 吴丽洒,赵明月,葛畅,等. 固相萃取-GC/MS法同时测定卷烟主流烟气中的16种多环芳烃[J].烟草科技,2018,51(4):46-52.
Wu Li-sa, Zhao Ming-yue, Ge Chang, et al. Simultaneous determination of 16 polycyclic aromatic hydrocarbons in mainstream cigarette smoke by solid phase extraction-GC/MS[J]. Tobacco Science & Technology,2018,51(4):46-52.
13 Wang J R, Zhang Z Q, Li Z L. Performance evaluation of desulfurized rubber asphalt based on rheological and environmental effects[J]. Journal of Materials in Civil Engineering,2020,32(1): No.04019330.
14 郝晓红,史福霞,肖湾,等. 气相色谱-质谱法测定书写笔用橡塑材料中18种多环芳烃的含量[J].理化检验-化学分册,2022,58(1):7-12.
Hao Xiao-hong, Shi Fu-xia, Xiao Wan, et al. GC-MS determination of 18 polycyclic aromatic hydrocarbons in rubber-plastic materials of writing pens[J]. Physical Testing and Chemical Analysis(Part B:Chemical Analysis),2022, 58(1):7-12.
15 郭蕾蕾. 顶空-气质联用法测定烟标油墨中VOCs的方法研究[D].昆明:昆明理工大学机电工程学院,2019.
Guo Lei-lei. Study on determination of VOCs in cigarette packaging ink by headspace-gas chromatography/mass spectrometry[D]. Kunming:School of Mechanical and Electrical Engineering, Kunming University of Science and Technology,2019.
16 环境保护部. 环境空气 苯系物的测定 活性炭吸附/二硫化碳解吸气相色谱法: [S].
[1] Ya-ning CUI,Chun-di SI,Tao-tao FAN,Fei WANG. Analysis on crack propagation of asphalt bridge deck pavement under water-force coupling action [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1988-1996.
[2] Ying-li GAO,Xiao-lei GU,Mei-jie LIAO,Xin-lang HU,Yu-tong XIE. Rheological properties and modification mechanism of SiO2 aerogel/reactive elastomer terpolymer/Polyphosphoric acid composite modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(7): 1978-1987.
[3] Yong-li XU,Xu-lan YANG,Ji-sen ZHOU,Song-han YANG,Ming-gang SUN. Asphalt fume composition of warm mix asphalt and smoke suppression performance of warm mix agent [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(6): 1701-1707.
[4] Xiao-kang ZHAO,Zhe HU,Zhen-xing NIU,Jiu-peng ZHANG,Jian-zhong PEI,Yong WEN. Meso-cracking behavior of cement-stabilized macadam materials based on heterogeneous model [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1258-1266.
[5] Tong-tong WAN,Hai-nian WANG,Wen-hua ZHENG,Po-nan FENG,Yu CHEN,Chen ZHANG. Thermal contraction deformation behavior of asphalt mixture overlay with coordination of unbound aggregate layer [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1045-1057.
[6] Jin XU,Zheng-huan CHEN,Qi-shuo LIAO,Zhan-ji ZHENG,He-shan ZHANG. Mental workload of drivers at high-density interchanges of freeways based on ECG data [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2807-2818.
[7] Jun CHEN,Zhen-hao SUN,Cheng ZHAO,Xin-yi WU,Jun-peng WANG. Laboratory investigation on cooling effect of multi-layer phase change asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 180-187.
[8] Nai-peng TANG,Chen-yang XUE,Shao-peng LIU,Hong-zhou ZHU,Rui LI. Review on aging mechanism, characterization and evaluation of crumb rubber modified asphalt [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 22-43.
[9] Zhuang WANG,Zhen-gang FENG,Dong-dong YAO,Qi CUI,Ruo-ting SHEN,Xin-jun LI. Research progress of conductive asphalt concrete [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 1-21.
[10] Sheng-qian ZHAO,Zhuo-hong CONG,Qing-long YOU,Yuan LI. Adhesion and raveling property between asphalt and aggregate: a review [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2437-2464.
[11] Tao MA,Yuan MA,Xiao-ming HUANG. Optimal combination of key parameters of intelligent compaction based on multiple nonlinear regression [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2067-2077.
[12] Liu YANG,Chuang-ye WANG,Meng-yan WANG,Yang CHENG. Traffic flow characteristics of six⁃lane freeways with a dedicated lane for automatic cars [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2043-2052.
[13] Zheng-feng ZHOU,Xiao-tao YU,Ya-le TAO,Mao ZHENG,Chuan-qi YAN. High-temperature performance evaluation of resin and elastomer high viscosity asphalt based on grey correlation analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2078-2088.
[14] Qing-xia ZHANG,Ji-lin HOU,Xin-hao AN,Xiao-yang HU,Zhong-dong DUAN. Road roughness identification method based on vehicle impulse response [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1765-1772.
[15] Ping JIANG,Ye-wen CHEN,Xian-hua CHEN,Wei-qing ZHANG,Na LI,Wei WANG. Unconfined compression behavior of modified lime stabilized soil under dry wet and freeze⁃thaw cycles [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(6): 1809-1818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!