Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (10): 3058-3063.doi: 10.13229/j.cnki.jdxbgxb.20230554

Previous Articles    

Multisource heterogeneous sensor data fusion model based on fuzzy theory

Qiu-ju YANG()   

  1. School of Electrical Engineering and Information,Southwest Petroleum University,Chengdu 610500,China
  • Received:2023-04-27 Online:2024-10-01 Published:2024-11-22

Abstract:

There is a large amount of duplicate, conflicting, and redundant data in sensors, and traditional data fusion methods can only fuse partial source data, resulting in low credibility of target monitoring data. Therefore, a multi-source heterogeneous sensor data fusion model based on fuzzy theory is proposed. The D-S evidence theory is used to design data fusion rules, and the probability distribution function and distance matrix are used to reduce the calculation difficulty of multi-source data fusion rules. The binary function is used to convert each data source, and the support function is used to calculate the support value of each data source. The weight value of OWA operator is obtained with the help of fuzzy theory quantitative operator. According to these two values, conflicting data is removed, duplicate data is fused, and data source fusion is completed. The experimental results show that the proposed method can effectively reduce the fusion error of various source data, improve the reliability of monitoring data, and ensure the shortest fusion time cost.

Key words: fuzzy theory, D-S evidence theory, multi source heterogeneous sensors, multi source data fusion, support level, fusion rules

CLC Number: 

  • TN01

Table 1

Data changes of sensors within 0-10 s"

时间/sH1H2H3H4H5H6H7H8
128.027.527.927.228.328.429.027.9
228.828.727.928.328.727.628.128.6
328.327.828.428.327.628.929.829.7
427.828.728.329.729.028.628.127.9
528.327.328.127.427.628.729.629.5
628.127.229.728.327.127.927.829.3
729.328.729.529.827.328.628.629.7
827.327.828.629.527.628.727.628.5
929.327.229.727.929.027.627.828.3
1028.327.728.027.327.329.527.629.7

Fig.1

Absolute error analysis of data fusion for each sensor"

Fig.2

Analysis of relative error in data fusion of various sensors"

Fig.3

Comparison of time cost for data fusion from various sources"

1 宋永,杨阔,覃觅觅.基于循环神经网络的多模态无线传感数据自适应融合方法[J].传感技术学报,2023,36(1):141-146.
Song Yong, Yang Kuo, Qin Mi-mi. Adaptive fusion method of multimodal wireless sensor data based on recurrent neural network[J]. Chinese Journal of Sensors and Actuators, 2023,36(1): 141-146.
2 刘康,何明浩,韩俊,等.基于多传感器的雷达对抗侦察数据融合算法[J].系统工程与电子技术,2023,45(1):101-107.
Liu Kang, He Ming-hao, Han Jun, et al. Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor[J]. Systems Engineering and Electronics, 2023,45(1): 101-107.
3 隗寒冰,白林.基于多源异构信息融合的智能汽车目标检测算法[J].重庆交通大学学报:自然科学版,2021,40(8):140-149.
Wei Han-bing, Bai Lin. Intelligent vehicle target detection algorithm based on multi-source heterogeneous information fusion[J]. Journal of Chongqing Jiaotong University(Natural Sciences), 2021,40(8): 140-149.
4 朱聪.基于时空预处理DS证据的同质传感器数据融合[J].仪表技术与传感器,2021(3):29-34, 62.
Zhu Cong. Homogeneous sensor data fusion based on spatio-temporal preprocessing ds evidence[J]. Instrument Technique and Sensor, 2021(3): 29-34, 62
5 陈义飞,郭胜,潘文安,等.基于多源传感器数据融合的三维场景重建[J].郑州大学学报:工学版,2021,42(2):80-86.
Chen Yi-fei, Guo Sheng, Pan Wen-an, et al. 3D scene reconstruction based on multi-source sensor data fusion[J]. Journal of Zhengzhou University(Engineering Science), 2021,42(2): 80-86.
6 刘康,何明浩,韩俊,等.基于多传感器的雷达对抗侦察数据融合算法[J].系统工程与电子技术,2023,45(1):101-107.
Liu Kang, He Ming-hao, Han Jun, et al. Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor[J]. Systems Engineering and Electronics, 2023,45(1): 101-107.
7 Zhu C, Qin B, Xiao F, et al. A fuzzy preference-based dempster-shafer evidence theory for decision fusion[J]. Information Sciences, 2021, 570(1):306-322.
8 Gao X, Pan L, Deng Y. Quantum Pythagorean Fuzzy Evidence Theory (QPFET): a negation of quantum mass function view[J]. IEEE Transactions on Fuzzy Systems, 2021(99):1-14.
9 蔺万科,宋华,南新元,等.一种基于最优聚类中心与权重欧式距离的多源异质传感器数据融合方法[J].传感技术学报,2022,35(1):49-56.
Lin Wan-ke, Song Hua, Xin-yuan Nan, et al. A multi-source heterogeneous sensor data fusion method based on optimal clustering center and weighted euclidean distance[J]. Chinese Journal of Sensors and Actuators, 2022,35(1): 49-56.
10 Liu Q, Zhang H. Reliability evaluation of weighted voting system based on D-S evidence theory[J]. Reliability Engineering & System Safety, 2022, 217:199-214.
11 周恩帆,马俊,周永杰,等.一种D-S证据理论的多传感器数据融合算法[J].小型微型计算机系统,2022,43(4):795-800.
Zhou En-fan, Ma Jun, Zhou Yong-jie, et al. Multi-sensor data fusion algorithm based on D-S evidence theory[J]. Journal of Chinese Mini-Micro Computer Systems, 2022,43(4): 795-800.
12 Menezes R D, Salarolli P F, Batista L G, et al. Slopping index for LD converters based on sound and image data fusion by fuzzy Kalman filter[J]. Ironmaking & Steelmaking, 2022,49(2):178-188.
13 Xu Z, Zhao S, Zhang R. An efficient multi-sensor fusion and tracking protocol in a vehicle-road collaborative system[J]. IET Communications, 2021, 15(18):2330-2341.
14 莫慧凌,郑海峰,高敏,等.基于联邦学习的多源异构数据融合算法[J].计算机研究与发展,2022,59(2):478-487.
Mo Hui-ling, Zheng Hai-feng, Gao Min, et al. Multi-source heterogeneous data fusion based on federated learning[J]. Journal of Computer Research and Development, 2022,59(2): 478-487.
15 Wei Y, Lei C. Heterogeneous multi-sensor fusion with random finite set multi-object densities[J]. IEEE Transactions on Signal Processing, 2021,69:3399-3414.
16 唐莉,唐家银,程世娟.多源异构数据贝叶斯统计融合可靠性评估模型[J].机械强度,2022,44(1):126-132.
Tang Li, Tang Jia-yin, Cheng Shi-juan. Bayesian statistical fusion reliability evaluation model of multi-source heterogeneous data[J]. Journal of Mechanical Strength, 2022,44(1): 126-132.
17 Wu H, Han Y, Jin J, et al. Novel deep learning based on data fusion integrating correlation analysis for soft sensor modeling[J]. Industrial & Engineering Chemistry Research, 2021, 60(27):10001-10010.
18 冀振燕,吴梦丹,杨春,等.可扩展的融合多源异构数据的推荐模型[J].北京邮电大学学报,2021,44(3):106-111.
Ji Zhen-yan, Wu Meng-dan, Yang Chun, et al. Scalable recommendation models fusing multi-source heterogeneous data[J]. Journal of Beijing University of Posts and Telecommunications, 2021,44(3): 106-111.
19 张辉,黄向生.基于UKF的无线传感器异步数据融合优化算法[J].重庆大学学报,2021,44(5):115-123.
Zhang Hui, Huang Xiang-sheng. UKF-based optimization algorithm for asynchronous data fusion of wireless sensor[J]. Journal of Chongqing University, 2021,44(5): 115-123.
20 岳元龙,陈亚南,孙钦,等.基于有偏卡尔曼的多传感器数据融合研究[J].仪表技术与传感器,2022(1):82-86.
Yue Yuan-long, Chen Ya-nan, Sun Qin, et al. Research on multi?sensor data fusion based on biased kalman[J]. Instrument Technique and Sensor, 2022 (1): 82-86.
[1] Xiong-fei LI,Jia-jing WU,Xiao-li ZHANG,Ze-yu WANG,Yun-cong FENG. Remote sensing image fusion algorithm based on relative total variation structure extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(5): 1775-1784.
[2] Zhi-jun TENG,Yu ZHANG,Hao-tian LI,Ming-yang SUN. Adaptive D⁃S evidence theory map matching algorithm of complex road network [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 524-530.
[3] LUAN Lei, ZHAO Xiao-hui, XU Yong-jun. Region oriented spectrum sensing model for cognitive radio system [J]. 吉林大学学报(工学版), 2016, 46(4): 1304-1312.
[4] CHEN Chuan-hai, YANG Zhao-jun, CHEN Fei, HAO Qin-bo, XU Bin-bin, KAN Ying-nan. Failure mode analysis of computer numerical control machine tools based on fuzzy-DEA [J]. 吉林大学学报(工学版), 2013, 43(06): 1523-1528.
[5] MA De-yin, LIANG Yan-chun, GUAN Ren-chu, ZHAO Xiao-she, SHI Xiao-hu. Evaluation of transformer aging based on fuzzy theory and bidirectional associative memory neural networks [J]. 吉林大学学报(工学版), 2013, 43(05): 1331-1337.
[6] CAO Hong-yu, SUN Han-xu, JIA Qing-xuan, YE Ping, GAO Xin. Building grid map with improved Dempster-Shafer evidence theory [J]. 吉林大学学报(工学版), 2011, 41(4): 1126-1130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!