Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1806-1816.doi: 10.13229/j.cnki.jdxbgxb.20230825

Previous Articles    

Design and test of hydraulic system for new dual-clutch full-powershift transmission of heavy-duty tractor

Jian WANG1,Wen-hu MA1,Tai-lin XIE2,Hua GUO2,Bi-feng YIN1   

  1. 1.School of Automotive and Traffic Engineering,Jiangsu University,Zhenjiang 212013,China
    2.Changzhou Changfa Technology Development Co. ,Ltd. ,Changzhou 213000,China
  • Received:2023-08-04 Online:2025-05-01 Published:2025-07-18

Abstract:

A hydraulic system was designed for the new dual-clutch full-powershift transmission of the newly developed 223.7 kW (300 hp) heavy-duty tractor, in order to achieve the purpose of uninterrupted shift and transmission cooling and lubrication. The AMESim dynamic shift simulation model was established, the flow and oil pressure properties of the hydraulic system as well as the dynamics of the clutches and synchronizers have been analyzed. The simulation results show that the pressure building time of the clutch hydraulic cylinder is less than 1 s, the pressure relief time is less than 0.6 s, and the pressure is stable during the pressure building/relief. The synchronizer hydraulic cylinder establishes stable oil pressure within 0.3 s; The cooling and lubrication subsystem takes 0.5 s to establish a stable oil pressure of 0.22 MPa, and the maximum flow rate is 57.6 L/min. The clutch completes the smooth transition of power during the shift, and the synchronizer completes the pre-selection before the shift. A new dual-clutch full-powershift transmission test bench was set up for further verification, the oil pressure test results of the clutch and synchronizer hydraulic cylinders are basically consistent with the simulation results, the output speed of the transmission increases from 270 r/min to 310 r/min, and the maximum wave momentum is 31 r/min, the output torque of the transmission is stable around 2 910 N·m, the maximum wave momentum is 10.1% of the stable value, and there is no power interruption during the shifting process. The simulation and test results verify that the hydraulic system can meet the working requirements of the new dual-clutch full-powershift transmission of heavy-duty tractor. The work in this paper can provide reference and guidance for the design and calculation of the hydraulic system of the dual-clutch full-powershift transmission of heavy-duty tractor.

Key words: power machinery and engineering, heavy-duty tractor, dual-clutch, full-powershift transmission, hydraulic system

CLC Number: 

  • TK5

Table 1

Parameters of new dual-clutch full-powershift transmission"

参数数值
功率/kW223.7
连续输入转矩/(N·m)1 050
最大输入转矩/(N·m)1 450
额定输入转速/(r·min-12 200
平均速比1.21
挡位数量24F+8R
传动效率≥90%
离合器数量4
同步器数量11

Fig.1

Powertrain system structure diagram of new dual -clutch full-powershift transmission"

Fig.2

Overall design diagram of hydraulic system"

Fig.3

Diagram of main oil pressure control circuit"

Fig.4

Diagram hydraulic control subsystem"

Fig.5

Diagram cooling and lubrication subsystem"

Fig.6

Principle diagram of hydraulic system"

Fig.7

Simulation model of power shift"

Table 2

Main parameters of AMESim simulation"

参 数数值
离合器摩擦因数0.14
离合器回位弹簧刚度/(N·mm-12 159
同步器摩擦因数0.11
同步器回位弹簧刚度/(N·mm-1304
1挡传动比8.17
2挡传动比7.05
主减速比4.96
轮边减速比8.31

Fig.8

Flow curves of cooling lubrication subsystem"

Fig.9

Oil pressure curves of cooling lubrication subsystem"

Fig.10

Oil pressure curves of clutch cylinders"

Fig.11

Torque curves of clutches"

Fig.12

Pressure curve of synchronizers cylinder"

Fig.13

Speed curves of synchronizer gear sleeves and engaging gears"

Fig.14

Flow curves of hydraulic control subsystem"

Fig.15

New dual-clutch full power shift transmission test bench"

Fig.16

Clutch hydraulic cylinders oil pressure change test curves"

Fig.17

Synchronizer hydraulic cylinder oil pressure change test curve"

Fig.18

Transmission output speed and torque curves"

[1] 席志强, 周志立, 张明柱, 等. 拖拉机动力换挡变速器换挡特性与控制策略研究[J]. 农业机械学报, 2016, 47(11): 350-357.
Xi Zhi-qiang, Zhou Zhi-li, Zhang Ming-zhu, et al. Shift characteristics and control strategy of power shift transmission on tractor[J]. Transactions of the Chinese Society of Agricultural Machinery, 2016, 47(11): 350-357.
[2] 傅生辉, 顾进恒, 李臻, 等. 基于MFAPC的动力换挡变速箱湿式离合器压力控制方法[J]. 农业机械学报, 2020, 51(12): 367-376.
Fu Sheng-hui, Gu Jin-heng, Li Zhen, et al. Pressure control method of wet clutch for PST of high-power tractor based on MFAPC algorithm[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(12): 367-376.
[3] 谢斌, 武仲斌, 毛恩荣. 农业拖拉机关键技术发展现状与展望[J]. 农业机械学报, 2018, 49(8): 1-17.
Xie Bin, Wu Zhong-bin, Mao En-rong. Development and prospect of key technologies on agricultural tractor[J]. Transactions of the Chinese Society of Agricultural Machinery, 2018, 49(8): 1-17.
[4] 董春红. 简述拖拉机传动系统关键技术[J]. 拖拉机与农用运输车, 2022, 49(3): 9-13.
Dong Chun-hong. Analysis of tractor transmission system key technologies[J]. Tractor&Farm Transporter, 2022, 49(3): 9-13.
[5] 王韦韦, 陈黎卿, 杨洋, 等. 农业机械底盘技术研究现状与展望[J]. 农业机械学报, 2021, 52(8): 1-15.
Wang Wei-wei, Chen Li-qing, Yang Yang, et al. Development and prospect of agricultural machinery chassis technology[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(8): 1-15.
[6] 袁哲, 臧宏达, 马文星, 等.变速箱润滑油路仿真分析及结构优化[J]. 吉林大学学报: 工学版, 2020, 50(4): 1257-1264.
Yuan Zhe, Zang Hong-da, Ma Wen-xing, et al. Simulation analysis structure optimization of lubrication oil circuit of gearbox[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1257-1264.
[7] Ma K, Sun D, Sun G, et al. Design and efficiency analysis of wet dual clutch transmission decentralised pump-controlled hydraulic system[J]. Mechanism and Machine Theory, 2020, 154:No.104003.
[8] Lei Y L, Li X Z, Liang W P. Hydraulic system optimization and dynamic characteristic simulation of double clutch transmission[J]. Procedia Environmental Sciences, 2011, 10: 1065-1070.
[9] 李磊. 新型选择性输出双离合自动变速器电液伺服控制系统设计[D]. 合肥: 合肥工业大学机械工程学院, 2015.
Li Lei. Design for electro-hydraulic servo control system of new dual-clutch transmission with selective output[D]. Hefei: School of Mechanical Engineering, Hefei University of Technology, 2015.
[10] 李春芾, 席军强, 刘春颖. 多片湿式离合器快充油过程影响因素分析与控制[J]. 中国机械工程, 2019, 30(5): 513-518.
Li Chun-fu, Xi Jun-qiang, Liu Chun-ying. Analyses and control influence factors for multi-plate wet clutches in fast oil filling processes[J]. China Mechanical Engineering, 2019, 30(5): 513-518.
[11] 王光明, 朱思洪, 史立新, 等. 拖拉机液压机械无级变速箱控制与交互系统[J]. 农业机械学报, 2015, 46(6): 1-7.
Wang Guang-ming, Zhu Si-hong, Shi Li-xin, et al. Control and interaction system for tractor hydro-mechanical CVT[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(6): 1-7.
[12] 韩兵, 蔡忆昔, 张彤, 等. 强混合动力变速器液压系统设计与动态特性仿真[J]. 农业机械学报, 2011, 42(2): 43-47.
Han Bing, Cai Yi-xi, Zhang Tong, et al. Hydraulic system design and dynamic characteristic simulation of full hybrid transmission[J]. Transactions of the Chinese Society of Agricultural Machinery, 2011, 42(2): 43-47.
[13] 熊序, 鲁植雄, 程准, 等. 重型拖拉机液压机械无级变速箱冷却润滑油液的分配优化[J]. 南京农业大学学报, 2021, 44(5): 993-1001.
Xiong Xu, Lu Zhi-xiong, Cheng Zhun, et al. Oil distribution optimization of cooling and lubrication for hydro-mechanical continuously variable trans mission of heavy-duty tractor[J]. Journal of Nanjing Agricultural University,2021,44(5): 993-1001.
[14] 陆中华, 程秀生, 冯巍. 湿式双离合器自动变速器的升档控制[J]. 农业工程学报, 2010, 26(5): 132-136.
Lu Zhong-hua, Cheng Xiu-sheng, Feng Wei. Up-shift control in wet double clutch transmission[J]. Transactions of the CSAE, 2010, 26(5): 132-136.
[15] 孙冬野, 陈旭东, 李宝刚, 等. 基于遗传算法的拖拉机动力换挡过程动态控制方法[J]. 重庆大学学报, 2019, 42(8): 1-14.
Sun Dong-ye, Chen Xu-dong, Li Bao-gang, et al. Dynamic control method of tractor powershift process based on genetic algorithm[J]. Journal of Chongqing University, 2019, 42(8): 1-14.
[16] 陆凯, 鲁杨, 邓晓亭, 等. 理论换段点下HMCVT换段离合器转矩交接及控制[J]. 农业工程学报, 2022, 38(19): 23-32.
Lu Kai, Lu Yang, Deng Xiao-ting, et al. Torque handover and control of the HMCVT shift clutches under the theoretical shift condition[J]. Transactions of the CSAE, 2022, 38(19): 23-32.
[17] 孟彬, 杨冠政, 徐豪, 等. 插装式2D电液比例流量阀的特性研究[J]. 机械工程学报, 2022, 58(20): 421-437.
Meng Bin, Yang Guan-zheng, Xu Hao, et al. Study on characteristics of 2D cartridge electro-hydraulic proportional flow rate valve[J]. Journal of Mechanical Engineering, 2022, 58(20): 421-437.
[18] 李晓祥, 王安麟, 樊旭灿, 等. 面向离合器接合过程的比例电磁阀动态特性模型与设计[J]. 西安交通大学学报, 2020, 54(5): 46-52.
Li Xiao-xiang, Wang An-lin, Fan Xu-can, et al. Dynamic characteristics model and design of proportional solenoid valve for clutch engagement process[J]. Journal of Xi´an Jiaotong University, 2020, 54(5): 46-52.
[19] 任延飞, 席军强, 陈慧岩, 等. 湿式离合器先导式电液调压阀时频域建模与分析[J]. 兵工学报, 2023, 44(1): 222-232.
Ren Yan-fei, Xi Jun-qaing, Chen Hui-yan, et al. Time-frequency domain modeling and analysis of dynamic characteristics of pilot-operated electro-hydraulic pressure regulating value for wet clutch[J]. Acta Armamentarii, 2023, 44(1): 222-232.
[20] 李云燕, 刘宇键, 陈漫. 湿式离合器充油控制响应特性研究[J]. 机床与液压, 2022, 50(9): 184-189.
Li Yun-yan, Liu Yu-jian, Chen Man. Wet clutch oiling control response characteristics analysis[J]. Machine Tool & Hydraulics, 2022, 50(9): 184-189.
[21] Zhao J, Xiao M, Bartos P, et al. Dynamic engagement characteristics of wet clutch based on hydro-mechanical continuously variable transmission[J]. Journal of Central South University, 2021, 28(5): 1377-1389.
[22] Lu T, Li H, Zhang J, et al. Supervisor control strategy of synchronizer for wet DCT based on online estimation of clutch drag torque[J]. Mechanical Systems and Signal Processing, 2016, 66: 840-861.
[23] Li H, Lu T, Zhang J, et al. Modelling and analysis of the synchronization process for a wet dual-clutch transmission[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(14): 1981-1995.
[24] Walker P D, Zhang N. Engagement and control of synchroniser mechanisms in dual clutch transmissions[J]. Mechanical Systems and Signal Processing, 2012, 26: 320-332.
[1] Yu FANG,De-qing MEI,Hui-long ZHENG,Xiao-fang YANG,Hai-long WU,Xiao-wu ZHANG. Groundbased experiments of measuring flame speed for combustion science rack aboard china space station [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(9): 2460-2468.
[2] Fan ZHANG,Ning HAN,Qing DU,Jing-qi BU,Zhi-jun PENG. Numerical simulation of evaporation and combustion of MMH gel droplets [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3114-3124.
[3] Ming-liang WEI,Zhi-dan LI,Bo TIAN,Qing LI,Fu-wu YAN,Yu WANG. Effect of length-to-diameter ratio on DPF pressure drop intersection point and internal flow field [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3125-3134.
[4] Gui-sheng CHEN,Guo-yan LUO,Liang-xue LI,Zhen HUANG,Yi LI. Analysis of diesel particulate filter channel flow field and its noise characteristics in plateau environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 1892-1901.
[5] Yan ZHANG,Wei LIU,Shu-yong ZHANG,Yi-qiang PEI,Meng-meng DONG,Jing QIN. Optimization on thermal load of combustion chamber on two/four⁃stroke switchable diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(3): 504-514.
[6] Zhong-hua GU,Pei-gang YAN,Pan-hong LIU,Xiang-feng WANG. Applying data driven algorithm to promote prediction accuracy of separation boundary simulation with eddy viscosity model [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2532-2541.
[7] Dong TANG,Yu-bin HAN,Lun HUA,Jin-chong PAN,Sheng LIU. Effect of lubricating oil ash on performance of gasoline particle filter in direct injection gasoline engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2501-2507.
[8] Wen-bo ZHAO,Yu-jie LI,Jun DENG,Li-guang LI,Zhi-jun WU. Needle motion and its influence on in-nozzle flow and spray jet characteristics [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(10): 2234-2243.
[9] Zhi-jun LI,Hao LIU,Li-peng ZHANG,Zhen-guo LI,Yuan-kai SHAO,Zhi-yang LI. Simulation on influence of microstructure of the wall on deep bed filtration of particulate filter [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2): 422-434.
[10] Jian WANG,Xin XU,Han GU,Duo-jun ZHANG,Sheng-ji LIU. Heating characteristics of DOC based on exhaust thermal management of diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(2): 408-416.
[11] Chang-qing SONG,Wen-miao CHEN,Jun LI,Da-wei QU,Hao CUI. Effects of single and dual ignition on combustion characteristics of natural gas under different equivalence ratios [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1929-1935.
[12] Yi-xiao ZHU,Xiao-min HE,Yi JIN. Effects of radial strut width on flow structure ofsingle⁃cavity trapped vortex combustor [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1936-1944.
[13] Chang-cheng LIU,Zhong-chang LIU,Jing TIAN,Yun XU,Ze-yu YANG. In⁃cylinder exergy destruction during combustion process ofheavy⁃duty turbocharged diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1911-1919.
[14] Qiao WANG,Wan-chen SUN,Liang GUO,Peng CHENG,Lu-yan FAN,Guo-liang LI. Effects of butanol/diesel blends on combustion and particulate emission characteristics of compression ignition engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1920-1928.
[15] Xiao-yu HU,Guo-xiang LI,Shu-zhan BAI,Ke SUN,Si-yuan LI. Modified boiling heat transfer model considering roughness and material of heating surface [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(6): 1945-1950.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAO Yan-ling, MU Hong-wei. Application of adaptive SRCDKF in SINS initial alignment with large azimuth misalignment[J]. 吉林大学学报(工学版), 2013, 43(01): 261 -266 .
[2] CAO Xiao-ning, LIU Yu-mei, SU Jian, WANG Xiu-gang, LI Zhuo. Determination of mass center height of bogie[J]. 吉林大学学报(工学版), 2013, 43(02): 329 -333 .
[3] HUANG Yong-ping, CHANG Peng-fei, GUO Kai, JIN Yu-shan. Method and implementation of software debugging based on event injection[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 373 -376 .
[4] Wang Su,Zhu Yu-ming,Chen Nan-fei,Gao Feng . Adaptive slicing algorithm for rapid prototyping of functionally gradient material component[J]. 吉林大学学报(工学版), 2007, 37(03): 558 -0562 .
[5] JIA Hong-fei, CHEN Bin, LI Guo-wei, ZHANG Jing-shan. Collision avoidance method in pedestrian simulation based on blockade-angle[J]. 吉林大学学报(工学版), 2011, 41(6): 1577 -1580 .
[6] LIU Jing-meng, MENG Yan-yan, CHEN Wei-hai, WU Xing-ming. Model and control of a PM spherical actuator based on voltage model[J]. 吉林大学学报(工学版), 2014, 44(2): 560 -566 .
[7] BAO Lei, XU Qi-zhi. Spectrum-keeping algorithm for fusing based on PCA[J]. 吉林大学学报(工学版), 2013, 43(增刊1): 88 -91 .
[8] ZHAI Zhi-fen, YAN Chang-rong, ZHANG Jian-hua, ZHANG Yan-qing, LIU Shuang. Optimization of water-saving irrigation technology based on ant colony algorithm and supporting vector machine[J]. 吉林大学学报(工学版), 2013, 43(04): 997 -1003 .
[9] YANG Zhao-jun,WANG Ji-li,LI Guo-fa,ZHANG Xin-ge. Reliability growth prediction based on fuzzy analytical hierarchy process for punching machines[J]. 吉林大学学报(工学版), 2014, 44(3): 686 -691 .
[10] LIU Yan1,GUAN Xiao-fang2,SONG Yu-quan2 . Three phases of China car development[J]. 吉林大学学报(工学版), 2009, 39(01): 259 -265 .