Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (5): 1648-1663.doi: 10.13229/j.cnki.jdxbgxb.20230849

Previous Articles     Next Articles

A heuristic task offloading approach with delay and energy constraints for edge-cloud collaboration

Ming-feng SU1,2(),Guo-jun WANG3(),Cong ZHOU1,Tian WANG4   

  1. 1.School of Computer Science,Hunan First Normal University,Changsha 410205,China
    2.School of Computer Science and Engineering,Central South University,Changsha 410083,China
    3.School of Computer Science and Cyber Engineering,Guangzhou University,Guangzhou 510006,China
    4.Institute of Artificial Intelligence and Future Networks,Beijing Normal University,Zhuhai 519087,China
  • Received:2023-08-11 Online:2025-05-01 Published:2025-07-18
  • Contact: Guo-jun WANG E-mail:mfsu@hnfnu.edu.cn;csgjwang@gzhu.edu.cn

Abstract:

To address the problems of load imbalance, task delay, and increased energy consumption caused by limited device resources and complex task variations in mobile edge computing, a computing task offloading approach with delay and energy constraints for edge-cloud collaboration is proposed, inspired by the cooperative foraging search of sparrow populations. Firstly, adapting to mobile edge cloud collaboration, designing the flyer improved producer update, sine-cosine perturbed follower update, and adaptively adjusted alerter update, a multi-strategy improved sparrow search algorithm (MSSA) is proposed to optimize task offloading location. Then, considering the task maximum completion deadline and delay relaxation variables, incorporating the timeout penalty energy consumption, a heuristic task offloading with MSSA algorithm (HTMA) is proposed, which greedily compares the total task delay and total task energy consumption of pre-offloading location sets under different delay constraints to further optimize task offloading. Experimental results show that compared with similar algorithms, MSSA can improve the optimization accuracy, convergence speed, and robustness of location search. Moreover, HTMA adapts to network changes with better performance of average task completion delay, total task energy consumption, and node load balancing degree.

Key words: edge computing, task offloading, edge-cloud collaboration, heuristic algorithm, cloud computing

CLC Number: 

  • TP301.6

Fig.1

Mobile edge-cloud collaborative computing model"

Fig.2

Producer's task offloading location search space (?rv<?wv)"

Fig.3

Change curve of θτ and ρτ(τmax=500)"

Table 1

Parameters of experimental environment"

参数单位值范围
任务数据量kB[600,1 000]
任务计算量cycle·kbit-120,100]
任务最大完成期限ms50
无线传输功率W25
边缘设备的最大无线链路带宽Mbit/s100
信道增益系数118.2-8~1.5-6
噪声功率W12]?10-8
边缘设备的最大算力GHz2×[24
边缘设备的有线链路带宽Mbit/s1 000
边缘设备的有线传输功率W13
边缘设备任务执行功率系数W·Hz-3[1.2,1.5]×10-26
云中心任务执行功率W[2.1,2.5]×10-25

Table 2

Setting of algorithm parameters"

算法参数
MSSAμsd=20, ?wv=0.8, μswmax=30, μswmin=3, nj)=100
SSAμsd=20, ?wv=0.8, μsw=20, nj)=100
RWSSAμsd=20, ?wv=0.8, μsw=20, nj)=100
AWPSOC1=1.5, C2=1.5, W=0.8, nj)=100

Fig.4

Performance of algorithms (n(i)=100, n(s)=5)"

Fig.5

Fitness value of algorithm for different tasks"

Fig.6

Convergence of algorithm for different tasks"

Fig.7

ATCD for different tasks (n(s)=5)"

Fig.8

ATCD for different edge devices (n(i)=100)"

Fig.9

TTEC for different tasks (n(s)=5)"

Fig.10

TTEC for different edge devices (n(i)=100)"

Fig.11

NLBD for different tasks (n(s)=5)"

Fig.12

NLBD for different edge devices (n(i)=100)"

Fig.13

TTCD and TTEC for different γ (n(i)=100, n(s)=5)"

Fig.14

TTCD and TTEC for different tξ (n(i)=100, n(s)=5)"

Fig.15

Overall system service efficiency for different ξ(n(i)=100, n(s)=5)"

Fig.16

TTCD and TTEC for different ωT (n(i)=100, n(s)=5)"

[1] Kim T, Sathyanarayana S D, Chen S Q, et al. MoDEMS: optimizing edge computing migrations for user mobility[J] IEEE Journal on Selected Areas in Communications, 2023, 41(3):675-689.
[2] 张依林, 梁玉珠, 尹沐君, 等. 移动边缘计算中计算卸载方案研究综述[J]. 计算机学报, 2021, 44(12): 2408-2432.
Zhang Yi-lin, Liang Yu-zhu, Yin Mu-jun, et al. Survey on the methods of computation offloading in mobile edge computing[J]. Chinese Journal of Computers, 2021,44(12):2408-2432.
[3] 苏命峰, 王国军, 李仁发. 基于利益相关视角的多维QoS云资源调度方法[J]. 通信学报, 2019, 40(6): 102-115.
Su Ming-feng, Wang Guo-jun, Li Ren-fa. Multidimensional QoS cloud computing resource scheduling method based on stakeholder perspective[J]. Journal on Communications, 2019, 40(6): 102-115.
[4] Wang S G, Guo Y, Zhang N, et al. Delay-aware microservice coordination in mobile edge computing: a reinforcement learning approach[J]. IEEE Transactions on Mobile Computing, 2021, 20(3): 939-951.
[5] Laskaridis S, Venieris S I, Almeida M, et al. SPINN: synergistic progressive inference of neural networks over device and cloud[C]∥The 26th ACM/IEEE International Conference on Mobile Computing and Networking, New York, USA, 2020: 1-15.
[6] 刘伟, 黄宇成, 杜薇, 等. 移动边缘计算中资源受限的串行任务卸载策略[J]. 软件学报, 2020, 31(6): 1889-1908.
Liu Wei, Huang Yu-cheng, Du Wei, et al. Resource-constrained serial task offload strategy in mobile edge computing[J]. Journal of Software, 2020, 31(6): 1889-1908.
[7] Wang T, Lu Y C, Wang J H, et al. EIHDP: edge-intelligent hierarchical dynamic pricing based on cloud-edge-client collaboration for iot systems[J]. IEEE Transactions on Computers, 2021, 70(8): 1285-1298.
[8] Zhao J H, Li Q P, Gong Y, et al. Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7944-7956.
[9] Gupta S, Chakareski J. Lifetime maximization in mobile edge computing networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(3): 3310-3321.
[10] Jin P P, Fei X C, Zhang Q X, et al. Latency-aware VNF chain deployment with efficient resource reuse at network edge[C]∥The 39th IEEE Conference on Computer Communications, New Jersey, USA, 2020: 267-276.
[11] Zou J F, Hao T B, Yu C, et al. A3C-DO: a regional resource scheduling framework based on deep reinforcement learning in edge scenario[J]. IEEE Transactions on Computers, 2021, 70(2): 228-239.
[12] Ning Z L, Dong P R, Kong X J, et al. A cooperative partial computation offloading scheme for mobile edge computing enabled internet of things[J]. IEEE Internet of Things Journal, 2019, 6(3): 4804-4814.
[13] Chen L X, Zhou S, Xu J. Computation peer offloading for energy-constrained mobile edge computing in small-cell networks[J]. IEEE/ACM Transactions on Networking, 2018, 26(4): 1619-1632.
[14] Lai F, Zhu X F, Madhyastha H V, et al. Oort: efficient federated learning via guided participant selection[C]∥The 15th USENIX Symposium on Operating Systems Design and Implementation, Berkeley, USA, 2021: 19-35.
[15] Biswas N, Wang Z J, Vandendorpe L, et al. On joint cooperative relaying, resource allocation, and scheduling for mobile edge computing networks[J]. IEEE Transactions on Computers, 2022, 70(9): 5882-5897.
[16] Xue J K, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[17] 国强, 朱国会, 李万臣. 基于混沌麻雀搜索算法的TDOA/FDOA定位[J]. 吉林大学学报:工学版, 2023, 53(2): 593-600.
Guo Qiang, Zhu Guo-hui, Li Wan-chen. TDOA/FDOA localization based on chaotic sparrow search algorithm[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(2): 593-600.
[18] Cheng B P, Fang Y W, Peng W S. Improved sparrow search algorithm based on normal cloud model and niche recombination strategy[J]. IEEE Transactions on Cloud Computing, 2023, 11(3): 2529-2545.
[19] Chang Z Z, Gu Q H, Lu C W, et al. 5G private network deployment optimization based on RWSSA in open-pit mine[J]. IEEE Transactions on Industrial Informatics, 2022, 18(8): 5466-5476.
[20] 苏命峰, 王国军, 李仁发. 边云协同计算中基于预测的资源部署与任务调度优化[J]. 计算机研究与发展, 2021, 58(11): 2558-2570.
Su Ming-feng, Wang Guo-jun, Li Ren-fa. Resource deployment with prediction and task scheduling optimization in edge cloud collaborative computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570.
[21] Liu W B, Wang Z D, Yuan Y, et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 1085-1093.
[22] Wang T, Zhang Y L, Xiong N A, et al. An effective edge-intelligent service placement technology for 5G-and-beyond industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2022, 18(6):4148-4157.
[1] Shu-xu ZHAO,Zhi-chao SUN,Xiao-long WANG. Dynamic authentication protocol for mobile edge computing scenarios [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(3): 1050-1060.
[2] Han-ying HUANG,Peng-fei LI. Method and experiments on edge computing resource allocation in smart fishery [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(1): 316-324.
[3] Si-feng ZHU,Jia-ming HU,Cheng-rui YANG,Jiang-hao CAI. Optimization of offloading decision based on priority task in edge computing scenes of internet of things [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3338-3350.
[4] Si-feng ZHU,Jiang-hao CAI,Zheng-yi CHAI,En-lin SUN. Computing offloading optimization scheme based on immune algorithm in edge computing scenes of internet of vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 221-231.
[5] Yu-ling JIAO,Xue DENG,Lin LI,Wen-jia LIU,Tian-ze ZHANG,Nan CAO. Balancing and collaborative optimization of two⁃sided U⁃type assembly line with multi⁃constraint [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(7): 2053-2060.
[6] Rui-shan DU,Yu-xin CHEN,Ling-dong MENG. Trusted cloud computing platform poly source big data time sequence scheduling algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(11): 3194-3200.
[7] Da-juan FAN,Zhi-qiu HUANG,Yan CAO. Adaptive access control method for SaaS privacy protection [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(10): 2897-2908.
[8] Si-feng ZHU,Ming-yang ZHAO,Zheng-yi CHAI. Computing offloading scheme based on particle swarm optimization algorithm in edge computing scene [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(11): 2698-2705.
[9] Yu-ling JIAO,Lin LI,Jin LI,Bin-jie XU,Nan CAO. Improved heuristic algorithm for U⁃shaped assembly line balancing [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(6): 2061-2067.
[10] Xiao-hui WEI,Fang-yu TANG,Hong-liang LI. Cost-efficient resource allocation algorithm for scientific workflow accross geo-distributed data centers [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(4): 1349-1357.
[11] Xiao-hui LI,Chao-yang CHEN,Hua-wei YI,Bo LI. Large scale network traffic prediction based on cloud computing and big data analysis [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(3): 1034-1039.
[12] Yuan SONG,Dan-yuan ZHOU,Wen-chang SHI. Method to enhance security function of OpenStack Swift cloud storage system [J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1): 314-322.
[13] Shun-fu JIN,Xiu-chen QIE,Hai-xing WU,Zhan-qiang HUO. Clustered virtual machine allocation strategy in cloud computing based on new type of sleep-mode and performance optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 237-246.
[14] JIAO Yu-ling, XU Liang-cheng, WANG Zhan-zhong, ZHANG Peng. Balance experiment and analysis of double U-shaped assembly line based on directed network [J]. 吉林大学学报(工学版), 2018, 48(2): 454-459.
[15] WANG Xu, OUYANG Ji-hong, CHEN Gui-fen. Heuristic algorithm of all common subsequences of multiple sequences for measuring multiple graphs similarity [J]. 吉林大学学报(工学版), 2018, 48(2): 526-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[2] MA Kai,Chen Suhuan. Iterative approximation algorithm of Hessian matrix in structural optimization[J]. 吉林大学学报(工学版), 2006, 36(增刊1): 30 -0033 .
[3] Yu Shu-you,Chen Hong . H/generalized H2 control of active suspension based on moving horizon strategy[J]. 吉林大学学报(工学版), 2007, 37(05): 1164 -1169 .
[4] PIAO Xiang-lan,WANG Guo-qiang,ZHANG Zhan-qiang,HAO Wang-jun. Discrete element method simulation of granular flow on |horizontalturn[J]. 吉林大学学报(工学版), 2010, 40(01): 98 -0102 .
[5] XU Cai-na,YIN Yong-guang,WANG Er-lei,LIU Jing-bo,LIN Song-yi,ZHANG Gang. Optimized process of extracting phosvitin from hen egg yolk based on genetic algorithm[J]. 吉林大学学报(工学版), 2011, 41(03): 876 -881 .
[6] ZHAO Chun-hui, TENG Zhi-jun, MA Shuang. Distributed compressive wideband spectrum sensing based on generalized power spectrum density[J]. , 2012, 42(04): 1015 -1020 .
[7] CHEN Song, LI Xian-sheng, REN Yuan-yuan. Adaptive signal control method for intersection with hook-turn buses[J]. 吉林大学学报(工学版), 2018, 48(2): 423 -429 .
[8] JIN Li-qiang,WANG Qing-nian,SONG Chuan-xue. Real-time recognition strategy of optimal wheel slip rate for vehicle with motorized wheels[J]. 吉林大学学报(工学版), 2010, 40(04): 889 -0894 .
[9] YANG Lei, MA Biao, LI He-yan. Steering safety control strategy of hydrostatic driving tracked vehicle on icy-snowy road[J]. 吉林大学学报(工学版), 2011, 41(4): 904 -909 .
[10] ZHAI Yi-kui, GAN Jun-ying, XU Ying, ZENG Jun-ying. Fast sparse representation for finger-knuckle-print recognition and it's parallel implementation[J]. 吉林大学学报(工学版), 2012, 42(增刊1): 350 -355 .