Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 1963-1972.doi: 10.13229/j.cnki.jdxbgxb.20231046
Previous Articles Next Articles
CLC Number:
| [1] | Chai Y, Sapp B, Bansal M, et al. MultiPath: multiple probabilistic anchor trajectory hypotheses for behavior prediction[J/OL]. [2023-07-13]. |
| [2] | Cui H G, Radosavljevic V, Chou F C, et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks[J/OL]. [2023-07-13]. |
| [3] | Casas S, Luo W, Urtasun R. Intentnet: learning to predict intention from raw sensor data[C]∥Conference on Robot Learning, Zürich, Switzerland, 2018: 947-956. |
| [4] | Lee, N, Choi W, Vernaza P, et al. Desire: Distant future prediction in dynamic scenes with interacting agents[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 336-345. |
| [5] | Hong J, Sapp B, Philbin J. Rules of the road: predicting driving behavior with a convolutional model of semantic interactions[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 8454-8462. |
| [6] | Jain A, Casas S, Liao R, et al. Discrete residual flow for probabilistic pedestrian behavior prediction[DB/OL]. [2023-07-13]. |
| [7] | Deo N, Trivedi M M. Trajectory forecasts in unknown environments conditioned on grid-based plans[DB/OL]. [2023-07-13]. |
| [8] | Khandelwal S, Qi W, Singh J, et al. What-if motion prediction for autonomous driving[DB/OL]. [2023-07-13]. |
| [9] | Mangalam K, An Y, Girase H, et al. From goals, waypoints & paths to long term human trajectory forecasting[C]∥IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 2021: 15233-15242. |
| [10] | Phan-Minh T, Grigore E C, Boulton F A, et al. Covernet: multimodal behavior prediction using trajectory sets[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 14074-14083. |
| [11] | Rhinehart N, McAllister R, Kitani K, et al. Precog: prediction conditioned on goals in visual multiagent settings[C]∥IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 2019: 2821-2830. |
| [12] | Ridel D, Deo N, Wolf D, et al. Scene compliant trajectory forecast with agent-centric spatiotemporal grids[J]. IEEE Robotics and Automation Letters, 2020, 2(5): 2816-2823. |
| [13] | Casas S, Gulino C, Liao R, al et, Spagnn: Spatially-aware graph neural networks for relational behavior forecasting from sensor data[C]∥IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020: 9491-9497. |
| [14] | Huang Y, Bi H, Li Z, al et, Stgat: Modeling spatial-temporal interactions for human trajectory prediction[C]∥IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 2019: 6272-6281. |
| [15] | Liang M, Yang B, Hu R, al et, Learning lane graph representations for motion forecasting[C]∥Computer Vision-ECCV 2020, Glasgow, UK, 2020: 541-556. |
| [16] | Mohamed A, Qian K, Elhoseiny M, al et, Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 14424-14432. |
| [17] | Gao J, Sun C, Zhao H, al et, Vectornet: Encoding hd maps and agent dynamics from vectorized representation[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 11525-11533. |
| [18] | Zhao H, Gao J, Lan T, et al. Tnt: Targetdriven trajectory prediction[C]∥Conference on Robot Learning, London, UK, 2021: 895-904. |
| [19] | Zeng W, Liang M, Liao R, et al. Lanercnn: distributed representations for graph-centric motion forecasting[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 2021: 532-539. |
| [20] | Alahi A, Goel K, Ramanathan V, al et, Social lstm: Human trajectory prediction in crowded spaces[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 961-971. |
| [21] | Deo N, Trivedi M M. Convolutional social pooling for vehicle trajectory prediction[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 2018: 1468-1476. |
| [22] | Gupta A, Johnson J, Li F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 2255-2264. |
| [23] | Mangalam K, Girase H, Agarwal S, al et, It is not the journey but the destination: endpoint conditioned trajectory prediction[C]∥Computer Vision-ECCV 2020, Glasgow, UK, 2020: 759-776. |
| [24] | Zhang L, Su P H, Hoang J, al et, Map-adaptive goal-based trajectory prediction[C]∥Conference on Robot Learning, London, UK, 2021: 1371-1383. |
| [25] | Kosaraju V, Sadeghian A, Mart´ın-Mart´ın R, al et, Social-bigat: multimodal trajectory forecasting using bicycle-GAN and graph attention networks[C]∥Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 2019, 32: 137-146. |
| [26] | Li L L, Yang B, Liang M, al et, End-to-end contextual perception and prediction with interaction transformer[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 5784-5791. |
| [27] | Liu Y, Zhang J, Fang L, al et, Multimodal motion prediction with stacked transformers[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021: 7577-7586. |
| [28] | Mercat J, Gilles T, Zoghby N E, al et, Multi-head attention for multimodal joint vehicle motion forecasting[C]∥IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020: 9638-9644. |
| [29] | Ngiam J, Caine B, Vasudevan V, et al. Scene transformer: a unified architecture for predicting multiple agent trajectories [DB/OL]. [2023-07-13]. |
| [30] | Yu C, Ma X, Ren J, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[DB/OL]. [2023-07-13]. |
| [31] | Salzmann T, Ivanovic B, Chakravarty P, et al. Trajectron++: multi-agent generative trajectory forecasting with heterogeneous data for control[DB/OL]. [2023-07-13]. |
| [32] | Ye L, Wang Z, Chen X, et al. GSAN: graph self-attention network for learning spatial-temporal interaction representation in autonomous driving[J]. IEEE Internet of Things Journal, 2021, 9(12): 9190-9204. |
| [33] | Luo C, Sun L, Dabiri D, et al. Probabilistic multi-modal trajectory prediction with lane attention for autonomous vehicles[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020: 2370-2376. |
| [34] | Messaoud K, Deo N, Trivedi M M, et al. Multi-head attention with joint agent-map representation for trajectory prediction in autonomous driving[DB/OL]. [2023-07-13]. |
| [35] | Gilles T, Sabatini S, Tsishkou D, et al. HOME: heatmap output for future motion estimation[J/OL]. [2023-07-13]. |
| [36] | Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J/OL]. [2023-07-13]. |
| [37] | Brown T B, Mann B, Ryder N, et al. Language models are few-shot learners[DB/OL]. [2023-07-13]. |
| [38] | Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]∥Computer Vision-ECCV 2020: 16th European Conference, Berlin: Springer, 2020: 213-229. |
| [39] | Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[DB/OL]. [2023-07-13]. |
| [40] | Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [DB/OL]. [2023-07-13]. |
| [41] | Arnab A, Dehghani M, Heigold G, et al. Vivit: a video vision transformer[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021: 6836-6846. |
| [42] | Ho J, Kalchbrenner N, Weissenborn D, et al. Axial attention in multidimensional transformers [DB/OL]. [2023-07-13]. |
| [43] | Lee J, Lee Y, Kim J, et al. Set transformer: a framework for attention-based permutation-invariant neural networks[C]∥International Conference on Machine Learning, Long Beach, California, USA, 2019: 3744-3753. |
| [44] | Bello I, Zoph B, Vaswani A, et al. Attention augmented convolutional networks[C]∥IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3286-3295. |
| [45] | Srinivas A, Lin T Y, Parmar N, et al. Bottleneck transformers for visual recognition[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021: 16519-16529. |
| [46] | Hung W C, Kretzschmar H, Lin T Y, et al. Soda: Multi-object tracking with soft data association[DB/OL]. [2023-07-13]. |
| [47] | Ramachandran P, Parmar N, Vaswani A, et al. Stand-alone self-attention in vision models[DB/OL]. [2023-07-13]. |
| [48] | Tay Y, Dehghani M, Abnar S, et al. Long range arena: a benchmark for efficient transformers [DB/OL]. [2023-07-13]. |
| [49] | Tay Y, Dehghani M, Bahri D, et al. Efficient transformers: a survey[J]. ACM Computing Surveys, 2022, 55(6): 1-28. |
| [50] | He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022: 16000-16009. |
| [51] | Giuliari F, Hasan I, Cristani M, et al. Transformer networks for trajectory forecasting[C]∥International conference on pattern recognition (ICPR), Montréal, QC, Canada, 2021: 10335-10342. |
| [52] | Zhou Z, Ye L, Wang J, al et, Hivt: hierarchical vector transformer for multi-agent motion prediction[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022: 8823-8833. |
| [53] | Jung C, Lee D, Lee S, et al. V2X communication-aided autonomous driving: system design and experimental validation[J]. Sensors, 2020, 20(10): No.2903. |
| [54] | Deng R, Di B, Song L. Cooperative collision avoidance for overtaking maneuvers in cellular V2X-based autonomous driving[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4434-4446. |
| [55] | Chang M F, Lambert J, Sangkloy P, al et, Argoverse: 3D tracking and forecasting with rich maps[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 8748-8757. |
| [56] | Houston J, Zuidhof G, Bergamini L, al et, One thousand and one hours: self-driving motion prediction dataset[C]∥Conference on Robot Learning, London, UK, 2021: 409-418. |
| [57] | Ettinger S, Cheng S, Caine B, et al. Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset[C]∥IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021: 9710-9719. |
| [58] | Caesar H, Bankiti V, Lang A H, et al.Nuscenes: a multimodal dataset for autonomous driving[C]∥IEEE/CVF Conference on Computer Cision and Pattern Recognition, Seattle, WA, USA, 2020: 11621-11631. |
| [59] | Dosovitskiy A, Ros G, Codevilla F, et al. CARLA: an open urban driving simulator[C]∥Conference on Robot Learning, Mountain View, California, 2017: 1-16. |
| [1] | Xiang-jiu CHE,Yu-peng SUN. Graph node classification algorithm based on similarity random walk aggregation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2069-2075. |
| [2] | Feng-feng ZHOU,Zhe GUO,Yu-si FAN. Feature representation algorithm for imbalanced classification of multi⁃omics cancer data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2089-2096. |
| [3] | Zi-hao SHEN,Yong-sheng GAO,Hui WANG,Pei-qian LIU,Kun LIU. Deep deterministic policy gradient caching method for privacy protection in Internet of Vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1638-1647. |
| [4] | Xiang-jiu CHE,Yu-ning WU,Quan-le LIU. A weighted isomorphic graph classification algorithm based on causal feature learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 681-686. |
| [5] | Ling HUANG,Zuan CUI,Feng YOU,Pei-xin HONG,Hao-chuan ZHONG,Yi-xuan ZENG. Vehicle trajectory prediction model for multi-vehicle interaction scenario [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1188-1195. |
| [6] | Li-ming LIANG,Long-song ZHOU,Jiang YIN,Xiao-qi SHENG. Fusion multi-scale Transformer skin lesion segmentation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1086-1098. |
| [7] | Dondrub LHAKPA,Duoji ZHAXI,Jie ZHU. Tibetan text normalization method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3577-3588. |
| [8] | Yu-xin YE,Luo-jia XIA,Ming-hui SUN. Gesture input method based on transparent keyboard in augmented reality environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3274-3282. |
| [9] | Na CHE,Yi-ming ZHU,Jian ZHAO,Lei SUN,Li-juan SHI,Xian-wei ZENG. Connectionism based audio-visual speech recognition method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2984-2993. |
| [10] | Si-feng ZHU,Jiang-hao CAI,Zheng-yi CHAI,En-lin SUN. Computing offloading optimization scheme based on immune algorithm in edge computing scenes of internet of vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 221-231. |
| [11] | Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379. |
| [12] | Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480. |
| [13] | Yu-lin CHANG,Wen-qian XU,Chao SUN,Peng ZHANG. Day⁃to⁃day equilibrium of hybrid traffic considering obedience degree under internet of vehicles environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1085-1093. |
| [14] | Yan-ran LIU,Qing-yu MENG,Hong-yan GUO,Jia-lin LI. Vehicle trajectory prediction combined with high definition map in graph attention mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 792-801. |
| [15] | Ke HE,Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO. Wheel odometry error prediction model based on transformer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 653-662. |
|