Journal of Jilin University(Engineering and Technology Edition) ›› 2025, Vol. 55 ›› Issue (6): 1963-1972.doi: 10.13229/j.cnki.jdxbgxb.20231046

Previous Articles     Next Articles

Trajectory prediction model for intelligent connected vehicle

Jian WANG(),Chen-wei JIA   

  1. College of Computer Science and Technology,Jilin University,Changchun 130012,China
  • Received:2023-10-03 Online:2025-06-01 Published:2025-07-23

Abstract:

In contrast to traditional single-vehicle intelligent autonomous driving systems, which can only make predictions about the future based on their own perception of the environment, intelligent connected autonomous driving systems have the capability to enhance predictions by incorporating additional dynamic information about the surrounding road environment through V2X technology. Building upon the foundation of single-vehicle intelligent trajectory prediction, a specialized encoder was employd to enable the trajectory prediction model to seamlessly fuse its own perceptual information with dynamic road data obtained via V2X communication. The experimental results on the CARLA simulation dataset demonstrate that using V2X technology to obtain dynamic information of the surrounding road environment can more accurately predict vehicle trajectories compared to trajectory prediction algorithms that do not use dynamic environment information.

Key words: computer application technology, autonomous driving, internet of vehicles, trajectory prediction

CLC Number: 

  • TP399

Table 1

Dynamic features one-hot encoding"

下标含义
0车道状态未知
1车道允许通行(被绿灯控制)
2车道被黄灯控制
3车道不允许通行(被红灯控制)

Table 2

Static features one-hot encoding"

下标含义
0~21车道类型
22~25车道方向
26~36左车道类型
37~47右车道类型
48是否在交叉路口

Fig.1

Overall model architecture"

Fig.2

Agent-Agent interaction module"

Fig.3

Agent-Lane static interaction module"

Fig.4

Agent-Lane dynamic interaction module"

Table 3

CARLA virtual city description and sample setup"

城市描述训练集采样数验证集采样数
1小型城市交通场景1100 00025 000
2小型城市交通场景2100 00025 000
3大型的城市地图,带有环岛和大型路口场景100 00025 000
4小型城市交通场景,有一条“8字形”公路100 00025 000
5方形网格城市交通场景100 00025 000
6高速公路场景,有长的高速公路和许多出入口,包含密歇根式左转路口100 00025 000
7乡村道路场景,道路狭窄,几乎没有红绿灯100 00025 000
8大型城市的市中心场景100 00025 000

Table 4

Comparison between DICP1M and main stream trajectory prediction data sets"

属性nuScenesArgoverseDICP1M
预测时长/s233
轨迹数量/条4.3×103324×1031×106
城市数量/个228
采样频率/Hz21010
动态交通环境信息--
总计时长/h5.53201 389

Table 5

Specific hyperparameter settings"

超参数ArgoverseDICP1M
嵌入维度128128
学习率5×10-45×10-4
训练轮次6464
随机失活概率0.10.1
训练精度bf16bf16
批量大小16128
权重衰减率3×10-43×10-4

Table 6

Performance of DICP on different datasets"

数据集minADE↓minFDE↓minMR↓
Argoverse10.669 50.985 40.096 1
DICP1M10.301 90.620 90.074 6
DICP1M20.281 30.571 40.067 4

Fig.5

Scenario of vehicle is controlled by road signals"

Fig.6

Scenario of vehicles passing through roundabout"

Fig.7

Scenario of vehicle is controlled by road signals"

Fig.8

Scenario of vehicles are allowed to pass"

[1] Chai Y, Sapp B, Bansal M, et al. MultiPath: multiple probabilistic anchor trajectory hypotheses for behavior prediction[J/OL]. [2023-07-13].
[2] Cui H G, Radosavljevic V, Chou F C, et al. Multimodal trajectory predictions for autonomous driving using deep convolutional networks[J/OL]. [2023-07-13].
[3] Casas S, Luo W, Urtasun R. Intentnet: learning to predict intention from raw sensor data[C]∥Conference on Robot Learning, Zürich, Switzerland, 2018: 947-956.
[4] Lee, N, Choi W, Vernaza P, et al. Desire: Distant future prediction in dynamic scenes with interacting agents[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 2017: 336-345.
[5] Hong J, Sapp B, Philbin J. Rules of the road: predicting driving behavior with a convolutional model of semantic interactions[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 8454-8462.
[6] Jain A, Casas S, Liao R, et al. Discrete residual flow for probabilistic pedestrian behavior prediction[DB/OL]. [2023-07-13].
[7] Deo N, Trivedi M M. Trajectory forecasts in unknown environments conditioned on grid-based plans[DB/OL]. [2023-07-13].
[8] Khandelwal S, Qi W, Singh J, et al. What-if motion prediction for autonomous driving[DB/OL]. [2023-07-13].
[9] Mangalam K, An Y, Girase H, et al. From goals, waypoints & paths to long term human trajectory forecasting[C]∥IEEE/CVF International Conference on Computer Vision, Nashville, TN, USA, 2021: 15233-15242.
[10] Phan-Minh T, Grigore E C, Boulton F A, et al. Covernet: multimodal behavior prediction using trajectory sets[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 14074-14083.
[11] Rhinehart N, McAllister R, Kitani K, et al. Precog: prediction conditioned on goals in visual multiagent settings[C]∥IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 2019: 2821-2830.
[12] Ridel D, Deo N, Wolf D, et al. Scene compliant trajectory forecast with agent-centric spatiotemporal grids[J]. IEEE Robotics and Automation Letters, 2020, 2(5): 2816-2823.
[13] Casas S, Gulino C, Liao R, al et, Spagnn: Spatially-aware graph neural networks for relational behavior forecasting from sensor data[C]∥IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020: 9491-9497.
[14] Huang Y, Bi H, Li Z, al et, Stgat: Modeling spatial-temporal interactions for human trajectory prediction[C]∥IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 2019: 6272-6281.
[15] Liang M, Yang B, Hu R, al et, Learning lane graph representations for motion forecasting[C]∥Computer Vision-ECCV 2020, Glasgow, UK, 2020: 541-556.
[16] Mohamed A, Qian K, Elhoseiny M, al et, Social-stgcnn: A social spatio-temporal graph convolutional neural network for human trajectory prediction[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 14424-14432.
[17] Gao J, Sun C, Zhao H, al et, Vectornet: Encoding hd maps and agent dynamics from vectorized representation[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 2020: 11525-11533.
[18] Zhao H, Gao J, Lan T, et al. Tnt: Targetdriven trajectory prediction[C]∥Conference on Robot Learning, London, UK, 2021: 895-904.
[19] Zeng W, Liang M, Liao R, et al. Lanercnn: distributed representations for graph-centric motion forecasting[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 2021: 532-539.
[20] Alahi A, Goel K, Ramanathan V, al et, Social lstm: Human trajectory prediction in crowded spaces[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 2016: 961-971.
[21] Deo N, Trivedi M M. Convolutional social pooling for vehicle trajectory prediction[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 2018: 1468-1476.
[22] Gupta A, Johnson J, Li F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018: 2255-2264.
[23] Mangalam K, Girase H, Agarwal S, al et, It is not the journey but the destination: endpoint conditioned trajectory prediction[C]∥Computer Vision-ECCV 2020, Glasgow, UK, 2020: 759-776.
[24] Zhang L, Su P H, Hoang J, al et, Map-adaptive goal-based trajectory prediction[C]∥Conference on Robot Learning, London, UK, 2021: 1371-1383.
[25] Kosaraju V, Sadeghian A, Mart´ın-Mart´ın R, al et, Social-bigat: multimodal trajectory forecasting using bicycle-GAN and graph attention networks[C]∥Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 2019, 32: 137-146.
[26] Li L L, Yang B, Liang M, al et, End-to-end contextual perception and prediction with interaction transformer[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, USA, 2020: 5784-5791.
[27] Liu Y, Zhang J, Fang L, al et, Multimodal motion prediction with stacked transformers[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021: 7577-7586.
[28] Mercat J, Gilles T, Zoghby N E, al et, Multi-head attention for multimodal joint vehicle motion forecasting[C]∥IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020: 9638-9644.
[29] Ngiam J, Caine B, Vasudevan V, et al. Scene transformer: a unified architecture for predicting multiple agent trajectories [DB/OL]. [2023-07-13].
[30] Yu C, Ma X, Ren J, et al. Spatio-temporal graph transformer networks for pedestrian trajectory prediction[DB/OL]. [2023-07-13].
[31] Salzmann T, Ivanovic B, Chakravarty P, et al. Trajectron++: multi-agent generative trajectory forecasting with heterogeneous data for control[DB/OL]. [2023-07-13].
[32] Ye L, Wang Z, Chen X, et al. GSAN: graph self-attention network for learning spatial-temporal interaction representation in autonomous driving[J]. IEEE Internet of Things Journal, 2021, 9(12): 9190-9204.
[33] Luo C, Sun L, Dabiri D, et al. Probabilistic multi-modal trajectory prediction with lane attention for autonomous vehicles[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 2020: 2370-2376.
[34] Messaoud K, Deo N, Trivedi M M, et al. Multi-head attention with joint agent-map representation for trajectory prediction in autonomous driving[DB/OL]. [2023-07-13].
[35] Gilles T, Sabatini S, Tsishkou D, et al. HOME: heatmap output for future motion estimation[J/OL]. [2023-07-13].
[36] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J/OL]. [2023-07-13].
[37] Brown T B, Mann B, Ryder N, et al. Language models are few-shot learners[DB/OL]. [2023-07-13].
[38] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]∥Computer Vision-ECCV 2020: 16th European Conference, Berlin: Springer, 2020: 213-229.
[39] Devlin J, Chang M W, Lee K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[DB/OL]. [2023-07-13].
[40] Dosovitskiy A, Beyer L, Kolesnikov A, et al. An image is worth 16×16 words: Transformers for image recognition at scale [DB/OL]. [2023-07-13].
[41] Arnab A, Dehghani M, Heigold G, et al. Vivit: a video vision transformer[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021: 6836-6846.
[42] Ho J, Kalchbrenner N, Weissenborn D, et al. Axial attention in multidimensional transformers [DB/OL]. [2023-07-13].
[43] Lee J, Lee Y, Kim J, et al. Set transformer: a framework for attention-based permutation-invariant neural networks[C]∥International Conference on Machine Learning, Long Beach, California, USA, 2019: 3744-3753.
[44] Bello I, Zoph B, Vaswani A, et al. Attention augmented convolutional networks[C]∥IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 2019: 3286-3295.
[45] Srinivas A, Lin T Y, Parmar N, et al. Bottleneck transformers for visual recognition[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 2021: 16519-16529.
[46] Hung W C, Kretzschmar H, Lin T Y, et al. Soda: Multi-object tracking with soft data association[DB/OL]. [2023-07-13].
[47] Ramachandran P, Parmar N, Vaswani A, et al. Stand-alone self-attention in vision models[DB/OL]. [2023-07-13].
[48] Tay Y, Dehghani M, Abnar S, et al. Long range arena: a benchmark for efficient transformers [DB/OL]. [2023-07-13].
[49] Tay Y, Dehghani M, Bahri D, et al. Efficient transformers: a survey[J]. ACM Computing Surveys, 2022, 55(6): 1-28.
[50] He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision learners[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022: 16000-16009.
[51] Giuliari F, Hasan I, Cristani M, et al. Transformer networks for trajectory forecasting[C]∥International conference on pattern recognition (ICPR), Montréal, QC, Canada, 2021: 10335-10342.
[52] Zhou Z, Ye L, Wang J, al et, Hivt: hierarchical vector transformer for multi-agent motion prediction[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 2022: 8823-8833.
[53] Jung C, Lee D, Lee S, et al. V2X communication-aided autonomous driving: system design and experimental validation[J]. Sensors, 2020, 20(10): No.2903.
[54] Deng R, Di B, Song L. Cooperative collision avoidance for overtaking maneuvers in cellular V2X-based autonomous driving[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4434-4446.
[55] Chang M F, Lambert J, Sangkloy P, al et, Argoverse: 3D tracking and forecasting with rich maps[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 2019: 8748-8757.
[56] Houston J, Zuidhof G, Bergamini L, al et, One thousand and one hours: self-driving motion prediction dataset[C]∥Conference on Robot Learning, London, UK, 2021: 409-418.
[57] Ettinger S, Cheng S, Caine B, et al. Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset[C]∥IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 2021: 9710-9719.
[58] Caesar H, Bankiti V, Lang A H, et al.Nuscenes: a multimodal dataset for autonomous driving[C]∥IEEE/CVF Conference on Computer Cision and Pattern Recognition, Seattle, WA, USA, 2020: 11621-11631.
[59] Dosovitskiy A, Ros G, Codevilla F, et al. CARLA: an open urban driving simulator[C]∥Conference on Robot Learning, Mountain View, California, 2017: 1-16.
[1] Xiang-jiu CHE,Yu-peng SUN. Graph node classification algorithm based on similarity random walk aggregation [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2069-2075.
[2] Feng-feng ZHOU,Zhe GUO,Yu-si FAN. Feature representation algorithm for imbalanced classification of multi⁃omics cancer data [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(6): 2089-2096.
[3] Zi-hao SHEN,Yong-sheng GAO,Hui WANG,Pei-qian LIU,Kun LIU. Deep deterministic policy gradient caching method for privacy protection in Internet of Vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(5): 1638-1647.
[4] Xiang-jiu CHE,Yu-ning WU,Quan-le LIU. A weighted isomorphic graph classification algorithm based on causal feature learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2025, 55(2): 681-686.
[5] Ling HUANG,Zuan CUI,Feng YOU,Pei-xin HONG,Hao-chuan ZHONG,Yi-xuan ZENG. Vehicle trajectory prediction model for multi-vehicle interaction scenario [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(5): 1188-1195.
[6] Li-ming LIANG,Long-song ZHOU,Jiang YIN,Xiao-qi SHENG. Fusion multi-scale Transformer skin lesion segmentation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(4): 1086-1098.
[7] Dondrub LHAKPA,Duoji ZHAXI,Jie ZHU. Tibetan text normalization method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(12): 3577-3588.
[8] Yu-xin YE,Luo-jia XIA,Ming-hui SUN. Gesture input method based on transparent keyboard in augmented reality environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(11): 3274-3282.
[9] Na CHE,Yi-ming ZHU,Jian ZHAO,Lei SUN,Li-juan SHI,Xian-wei ZENG. Connectionism based audio-visual speech recognition method [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(10): 2984-2993.
[10] Si-feng ZHU,Jiang-hao CAI,Zheng-yi CHAI,En-lin SUN. Computing offloading optimization scheme based on immune algorithm in edge computing scenes of internet of vehicles [J]. Journal of Jilin University(Engineering and Technology Edition), 2024, 54(1): 221-231.
[11] Ya-hui ZHAO,Fei-yu LI,Rong-yi CUI,Guo-zhe JIN,Zhen-guo ZHANG,De LI,Xiao-feng JIN. Korean⁃Chinese translation quality estimation based on cross⁃lingual pretraining model [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(8): 2371-2379.
[12] Yan-tao TIAN,Xing HUANG,Hui-qiu LU,Kai-ge WANG,Fu-qiang XU. Multi⁃mode behavior trajectory prediction of surrounding vehicle based on attention and depth interaction [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(5): 1474-1480.
[13] Yu-lin CHANG,Wen-qian XU,Chao SUN,Peng ZHANG. Day⁃to⁃day equilibrium of hybrid traffic considering obedience degree under internet of vehicles environment [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(4): 1085-1093.
[14] Yan-ran LIU,Qing-yu MENG,Hong-yan GUO,Jia-lin LI. Vehicle trajectory prediction combined with high definition map in graph attention mode [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 792-801.
[15] Ke HE,Hai-tao DING,Xuan-qi LAI,Nan XU,Kong-hui GUO. Wheel odometry error prediction model based on transformer [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(3): 653-662.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Gang,Liu Xiao-guang,Dong Sha-sha,Liu Jing . Research on optimal redundancy doubleerasurecorrecting data layout[J]. 吉林大学学报(工学版), 2007, 37(03): 611 -0615 .
[2] DONG Jin-kun, LIU Bin, ZHANG Yan-nian, YE Ye. Stability Against Coupled BendingTorsional Galloping Oscillation by Beam Wind in Tall Building 3-Dimensional Structure[J]. 吉林大学学报(工学版), 2005, 35(05): 562 -0566 .
[3] Zhan Xiao-li;Zhang Xiao-ning;Lu Liang . Prediction of low temperature viscoelastic properties of asphalt [J]. 吉林大学学报(工学版), 2008, 38(03): 530 -0534 .
[4] . [J]. 吉林大学学报(工学版), 2005, 35(02): 170 -0173 .
[5] Zhao Shou-jing, Jiang Lei, Li Jun-hua, Xu Jie. Selection of highyield hairy root clone of ginseng and separation [JZ]and purification of ginsenoside Rb1 from ginseng hairy root[J]. 吉林大学学报(工学版), 2006, 36(04): 622 -627 .
[6] Zhao Yan-ping, Zhao Xiao-hui, Gu Hai-jun . Speech enhancement approach based on signal subspace
with multiinput in impulsive noise
[J]. 吉林大学学报(工学版), 2007, 37(02): 453 -0457 .
[7] Zang Chuanyi,Ma Hongan,Tian Yu,Xiao Hongyu,Jia Xiaopeng. Growth of Highquality Gem Diamonds with Different Seed Facets[J]. 吉林大学学报(工学版), 2006, 36(01): 10 -0013 .
[8] HAN Li-wei,HONG Wei,SU Yan,WANG Bing-gang,XIE Fang-xi. Vibration of gasoline engine during start process[J]. 吉林大学学报(工学版), 2010, 40(04): 937 -0941 .
[9] KAN Jun-wu,KAN Jun-man, TANG Ke-hong, REN Yu, ZHU Guo-ren, GAO Jun-feng . Piezomembrane pump driven linear motor[J]. 吉林大学学报(工学版), 2008, 38(06): 1337 -1341 .
[10] CHEN Yu,TANG Chang-jie,ZHU Ming-fang,DAI Shu-cheng,ZHU Rui,JIANG Yue,LI Chuan. FactorGEP: a novel factorization of polynomial algorithm based on GEP with gene reduction strategy[J]. 吉林大学学报(工学版), 2009, 39(06): 1612 -1617 .