Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (8): 2385-2392.doi: 10.13229/j.cnki.jdxbgxb.20231300

Previous Articles     Next Articles

Experimental on self-noise control of airfoil with ridge-like structure

Wen CHENG1,2(),Cheng-chun ZHANG2,3,4(),Xiao-wei SUN3,Chun SHEN2,3,Zheng-yang WU1,2,Zheng-wu CHEN1   

  1. 1.Key Laboratory of Aerodynamic Noise Control,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.Key Laboratory of Bionics Engineering(Ministry of Education),Jilin University,Changchun 130022,China
    3.Weihai Junming Power Technology Co. ,Ltd. ,Weihai 264200,China
    4.Weihai Institute of Bionics,Jilin University,Weihai 264200,China
  • Received:2023-11-24 Online:2024-08-01 Published:2024-08-30
  • Contact: Cheng-chun ZHANG E-mail:cw2143@163.com;jluzcc@jlu.edu.cn

Abstract:

This paper presents an experiment investigation of acoustic properties for NACA0012 airfoil at different freestream velocities with 0°and 10°angle of attack(AOA). The acoustic wind tunnel test results show that at the freestream velocities of 30-60 m/s and AOA= 0°, the dominant noise is broadband noise, but at AOA=10°, the dominant noise is switched into tonal noise, and the tonal frequency is close to the Arbey acoustic feedback model. In order to eliminate the tonal noise of airfoil, a flow control method using a ridge-like structure to break the acoustic feedback loop is proposed, and the influence of the position and arrangement of the structure on the noise reduction performance is discussed. The results show that the closer the structure is to the leading edge of the airfoil, the more obvious the noise reduction effect is. With the increase of speed, the ridge-like structure in the back position no longer has a noise reduction effect in turn. In addition, the generation of tonal noise seems to be only related to the flow state of the pressure surface. When the flow state of the pressure surface is broken by the ridge-like structure, an effective feedback loop cannot be formed. Finally, based on the Arbey acoustic feedback theory, the differences in noise reduction performance of ridge-like structures are explored. It was found that when the ridge-like structure is located before the maximum speed point of the blade pressure surface, it can effectively intervene in the flow field to suppress the generation of monophonic noise.

Key words: flow noise control, ridge-like structure, airfoil noise experiment, airfoil tonal self-noise, acoustic feedback loop

CLC Number: 

  • TB53

Fig.1

Physical diagram of wind tunnel test and schematic diagram of microphone installation"

Fig.2

Physical diagram of leading edge/trailing edge of the airfoil and its ridge structure diagram"

Table 1

Arrangement of blade model M1~M5 with ridge-like structure"

位置M1M2M3M4M5
分布双面双面双面吸力面压力面
前缘位置0.010 25c0.131 25c0.25c0.010 25c0.010 25c
后缘位置0.962 5c0.962 5c0.962 5c0.962 5c0.962 5c

Fig.3

Noise spectrum of NACA0012 airfoil at different angles of attack"

Table 2

Primary frequency prediction results of tonal noise"

速度/模型30 m/s40 m/s50 m/s60 m/s
试验1 1251 7622 4502 812
Paterson1 0582 1352 7363 256
Arbey1 1361 7412 2562 668
Brooks1 1231 5342 0282 630

Fig.4

Model M1-M3 noise spectrum at freestream velocity of 30-60 m/s"

Fig.5

Model M4-M5 noise spectrum at freestream velocity of 30-60 m/s"

Fig.6

Distribution of Isentropic Mach number on the pressure surface and the relative position at the velocity of 30~60 m/s"

1 Amiet R K. Noise due to turbulent flow past a trailing edge[J]. Journal of Sound and Vibration, 1976,47(3): 387-393.
2 Lowson M, Fiddes S, Nash E. Laminar boundary layer aeroacoustic instabilities[C]∥32th AIAA/CEAS Aeroacoustics Conference,1994: 0358.
3 Nash E C, McAlpine A, Lowson M V. Boundary-ayer instability noise on aerofoils[J].Journal of Fluid Mechanics, 1999, 382(1): 27-61.
4 Chen K, Liu Q P, Liao G H,et al. The sound suppression characteristics of wing feather of Owl[J]. Journal of Bionic Engineering, 2012,9(2): 192-199.
5 徐成宇,钱志辉,刘庆萍,等. 基于长耳鸮翼前缘的仿生耦合翼型气动性能[J]. 吉林大学学报:工学版, 2010, 40(1): 108-112.
Xu Cheng-yu, Qian Zhi-hui, Liu Qing-ping, et al. Aerodynamic performance of bionic coupled foils based on leading edge of long-eared owl wing[J]. Journal of Jilin University (Engineering and Technology Edition), 2010, 40(1): 108-112.
6 葛长江, 叶辉, 胡兴军, 等.鸮翼后缘噪声的预测及控制[J]. 吉林大学学报:工学版, 2016, 46(6): 1981-1986.
Ge Chang-jiang, Ye Hui, Hu Xing-jun, et al. Prediction and control of trailing edge noise on owl wings[J]. Journal of Jilin University (Engineering and Technology Edition), 2016, 46(6): 1981-1986.
7 Johari H, Henoch C W, Custodio D, et al. Effects of leading-edge protuberances on airfoil performance[J]. AIAA Journal, 2007, 45(11): 2634-2642.
8 Shorbagy M, El-hadidi B, El-Bayoumi, et al. Experimental study on bio-inspired wings with tubercles[C]∥27th AIAA/CEAS Aeroacoustics Conference, San Diego, USA, 2019: 2643-2672.
9 郑覃. 扩压叶栅前缘结状凸起流动机理研究[D].上海:上海交通大学航空航天学院,2019.
Zheng Tan. Investigation of flow mechanisms for Leading edge tubercles in compressor cascade[D]. Shanghai: School of Aeronautics and Astronautics, Shanghai Jiaotong University, 2019.
10 Alex S H, Lau S H, Kim J W. The effect of wavy leading edges on aerofoil-gust interaction noise[J]. Journal Sound Vib, 2013; 332(24): 6234-6253.
11 陈伟杰. 基于仿生学原理的叶片气动噪声控制实验及数值研究[D]. 西安: 西北工业大学动力与能源学院,2018.
Chen Wei-jie. Experimental and numerical study on blade aerodynamic noise control by bio-inspired treatments[D].Xi'an: School of Power and Energy, Northwestern Polytechnical University, 2018.
12 Paterson R W, Vogt P G, Fink M R. Vortex noise of isolated airfoils[J]. Journal of Aircraft,1973,10(5): 296-302.
13 Brooks T F, Pope D S, Marcolini, M A. Airfoil Self-noise and Prediction[M]. NSAS Reference Publication, 1989.
14 Christopher K W T. Discrete tones of isolated airfoils[J]. The Journal of the Acoustical Society of America, 1974,55(6): 1173-1177.
15 Christopher K W T, Ju H B. Aerofoil tones at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2012,690: 536-570.
16 Plogmann B, Herrig A, Wurz W. Experimental investigations of a trailing edge noise feedback mechanism on a NACA0012 airfoil[J]. Experiments in Fluids, 2013,54(5): 1-14.
17 Desquesnes G, Terracol M, Sagaut P. Numerical investigation of the tone noise mechanism over laminar airfoils[J]. Journal of Fluid Mechanics, 2007, 591: 155-182.
18 Fink M R. Prediction of airfoil tone frequencies[J]. Journal of Aircraft, 1975,12(2): 118-120.
19 Arbey H, Bataille J. Noise generated by airfoil profiles placed in a uniform laminar flow[J]. Journal of Fluid Mechanics, 1983,134: 33-47.
20 Prateeka J, Yanna P, Gyuzel Y, et.al. Experimental investigation of aerofoil tonal noise at low Mach number[J]. Journal of Fluid Mechanics, 2022, 932: A37.
21 Jones L E, Sandberg R D. Numerical analysis of tonal airfoil self-noise and acoustic feedback-loops[J]. Journal of Sound & Vibration, 2011,330(25): 6137- 6152.
22 Lu W S, Liu P Q, Guo H, et al. Investigation on tones due to self-excited oscillation within leading-edge slat cove at different angles of attack: frequency and intensity[J]. Aerospace Science and Technology, 2019,91: 59-69.
23 Probsting S, Yang Y N, Zhang H Y, et.al. Effect of Mach number on the aeroacoustic feedback loop generating airfoil tonal noise[J]. Physics of Fluids, 2022,34: 094115.
24 Jones L E, Richard D. Numerical investigation of tonal airfoil self-noise generated by an acoustic feedback-loop[C]∥16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden, 2010: 3701-3714.
25 Chong T P, Joseph P. An experimental study of tonal noise mechanism of laminar airfoils[C]∥15th AIAA/CEAS Aeroacoustics Conference, Miami, Florida, 2009: 3345.
26 Arcondoulis E J G, Doolan C J, Zander A C, et al. An experimental investigation of airfoil tonal noise caused by an acoustic feedback loop[C]∥Annual Conference of the Australian Acoustical Society, Victor Harbor, Australia, 2013: 23-30.
[1] Ya-bing CHENG,Ze-yu YANG,Yan LI,Li-chi AN,Ze-hui XU,Peng-yu CAO,Lu-xiang CHEN. Vibration and noise characteristics base on timing silent chain system of hybrid electric vehicle [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(9): 2465-2473.
[2] LUO Le, ZHENG Xu, LYU Yi, HAO Zhi-yong. Sound radiation characteristics of high-speed train wheel and wheelsets [J]. 吉林大学学报(工学版), 2016, 46(5): 1464-1470.
[3] SUN Wei, LI Jian, JIA Shi. Identification of nonlinear stiffness and damping for hard-coating composite structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[4] GAO Yin-han, ZHANG Li-tong, LIANG Jie, WANG Zhi-bo, JIANG Wen-jun. Abnormal noise analysis for commercial vehicle cab based on psychoacoustics [J]. 吉林大学学报(工学版), 2016, 46(1): 43-49.
[5] MO Chou, CHEN Ji-qing, LAN Feng-chong. Inverse sub-structuring transfer path analysis method [J]. 吉林大学学报(工学版), 2015, 45(6): 1751-1756.
[6] HAO Zhi-yong, DING Zheng-yin, SUN Qiang. Sound insulation performance of the silent floor of high-speed train based on FE-SEA hybrid method [J]. 吉林大学学报(工学版), 2015, 45(4): 1069-1075.
[7] WANG Bin-xing, ZHENG Si-fa, LIU Hai-tao, LIAN Xiao-min. Estimation of acoustic characteristic of porous material based on in-situ measurement [J]. , 2012, (03): 545-550.
[8] DENG Jiang-hua, LIU Xian-dong, SHAN Ying-chun. Contribution of in-cabin noise based on near-field acoustic holography [J]. 吉林大学学报(工学版), 2010, 40(03): 666-0671.
[9] WANG Zhong-Xin, RONG Liang-Liang, LIN Jun. Spike noise elimination from surface nuclear magnetic resonance signal for underground water [J]. 吉林大学学报(工学版), 2009, 39(05): 1282-1287.
[10] LIANG Jie, LU Xiao-jun, SUN Wei . Noise Sources Identification and Noise Control of S493Q Diesel Engine [J]. 吉林大学学报(工学版), 2001, (3): 57-60.
[11] SHANG Xin-Lei, LIN Jun, TIAN Yu-Juan, WANG Ying-Ji. Relay smooth switching technique and application in magnetic resonance sounding system [J]. 吉林大学学报(工学版), 2011, 41(02): 398-0402.
[12] CHANG Zhen-chen, WANG Deng-feng, ZHOU Shu-hui, GUO Xiao. Research Developments and Prospects of Noise Control Technology in Vehicle [J]. 吉林大学学报(工学版), 2002, (4): 86-90.
[13] LIANG Jie, SUN Wei, LU Xiao-jun, XING Si-hai . Noise Source Identification of CA498 Diesel Engine and Its Noise Suppression Measures [J]. 吉林大学学报(工学版), 2003, (1): 107-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .