Journal of Jilin University(Engineering and Technology Edition) ›› 2024, Vol. 54 ›› Issue (12): 3673-3680.doi: 10.13229/j.cnki.jdxbgxb.20240613

Previous Articles     Next Articles

Repetitive gradient learning parameter estimation of quantized Wiener system

Hao-zhe CAO(),Jin-ben ZHOU,Li-hua LI()   

  1. School of National Security,People’s Public Security University of China,Beijing 100038,China
  • Received:2024-06-03 Online:2024-12-01 Published:2025-01-24
  • Contact: Li-hua LI E-mail:caohaozhe@ppsuc.edu.cn;lilihua@ppsuc.edu.cn

Abstract:

In order to address the identification of the quantized Wiener system, a repetitive gradient learning identification algorithm was proposed. Firstly, based on the decomposition technique, the quantified Wiener system was transformed into an identification model with parameter separation, in which the computational burden of was reduced. Secondly, the observation data were extended using data window theory to obtain more quantitative system modal information. To address the issue of moving time window length, the idea of repetitive learning was integrated into the parameter adaptive law update mechanism, which greatly improves the estimation performance. Finally, the convergence of the estimator and the comparisons of example have used to show the effectiveness and advantages of the proposed algorithm.

Key words: systems engineering, system identification, Wiener system, gradient estimation, repetitive learning, quantized observation

CLC Number: 

  • TP273

Fig.1

Schematic diagram of diagram of quantized system"

Fig.2

Parameter estimation curve of g2"

Fig.3

Parameter estimation curve of g3"

Fig.4

Parameter estimation curve of a1"

Fig.5

Parameter estimation curve of a2"

Fig.6

Parameter estimation curve of b1"

Fig.7

Parameter estimation curve of b2"

Fig.8

Model validation"

Fig.9

Estimation errors of MDWRLG under different window lengths"

1 杨小玉,谢里阳,杨奕凤,等.Weibull形状参数加权极大似然估计的偏差修正[J].吉林大学学报: 工学版,2024,54(10):2764-2770.
Yang Xiao-yu, Xie Li-yang, Yang Yi-feng, et al. Bias correction for weighted maximum likelihood estimation of Weibull shape parameters[J]. Journal of Jilin University (Engineering and Technology Edition),2024,54(10):2764-2770.
2 Shanshiashvili B, Prangishjvili A, Tsveraidze Z. Structure identification of continuous-time block-oriented nonlinear systems in the frequency domain[J]. IFAC-PapersOnLine, 2019, 52(13): 463-468.
3 Zhao W, Weyer E, Yin G G, et al. Adaptive regulation of block-oriented nonlinear systems using binary sensors with applications to automotive engine control[J]. IEEE Transactions on Automatic Control, 2023, 68(3): 1369-1382.
4 郑玉彬,宋杰,刘津彤,等.基于Copula量化解析结构模型的复杂系统模块分类[J].吉林大学学报: 工学版, 2022, 52(6): 1281-1291.
Zheng Yu-bin, Song Jie, Liu Jin-tong, et al. Complex system module classification based on Copula numerical interpretative structural modeling[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(6): 1281-1291.
5 Aliiskan I. Optimized inverse nonlinear function-based wiener model predictive control for nonlinear systems[J]. Arabian Journal for Science and Engineering, 2021, 46(10): 10217-10230.
6 Ling X T, Zhang X Z, Sun J, et al. When hammerstein meets wiener: nonlinearity modeling for end-to-end visible light communication links[J]. IEEE Transactions on Communications, 2023, 71(1): 310-323.
7 吴子斌,闫巧.基于动量的映射式梯度下降算法[J].计算机科学,2022,49():178-183.
Wu Zi-bin, Yan Qiao. Projected gradient descent algorithm with momentum[J]. Computer Science, 2022, 49(Sup.1): 178-183.
8 Wang J, Ji Y, Zhang X, et al. Two‐stage gradient‐based iterative algorithms for the fractional‐order nonlinear systems by using the hierarchical identification principle[J]. International Journal of Adaptive Control and Signal Processing, 2022, 36(7): 1778-1796.
9 Chaudgary N I, Khan Z A, KianiI A K, et al. Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems[J]. Chaos, Solitons & Fractals, 2022, 163: No.112611.
10 Ding F, Xu L, Zhang X, et al. Filtered auxiliary model recursive generalized extended parameter estimation methods for Box-Jenkins systems by means of the filtering identification idea[J]. International Journal of Robust and Nonlinear Control, 2023, 33(10): 5510-5535.
11 Li J, Zong T, Gu J, et al. Parameter estimation of Wiener systems based on the particle swarm iteration and gradient search principle[J]. Circuits, systems, and signal processing, 2020(39): 3470-3495.
12 Zhao Y, Yin G G, Zhang J F. Identification of Wiener systems with binary-valued output observations[J]. Automatica, 2007, 43(10): 1752-1765.
13 Bottegal G, Hjalmarsson H, Pillonetto G. A new kernel-based approach to system identification with quantized output data[J/OL]. [2024-05-23].
14 Zhao W, Weyer E, Yin G, et al. Adaptive regulation of block-oriented nonlinear systems using binary sensors with applications to automotive engine control[J]. IEEE Transactions on Automatic Control, 2022, 68(3): 1369-1382.
15 Vörös J. New application of the key term separation principle[J]. Journal of Electrical Engineering, 2022, 73(6): 437-441.
16 Goodwin G C, Sin K S. Adaptive Filtering Prediction and Control[M]. Mineola, NY:Dover Publications, 2009.
17 Ding F, Ma H, Pan J, et al. Hierarchical gradient- and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation[J]. Journal of the Franklin Institute, 2021, 358(9): 5113-5135.
18 Pan J, Liu Y, Shu J. Gradient-based parameter estimation for a nonlinear exponential autoregressive time-series model by using the multi-innovation[J]. International Journal of Control, Automation, and Systems, 2023, 21: 140-150.
[1] Sheng JIANG,Peng-lang WANG,Zhi-ji DENG,Yi-ming BIE. Image fusion algorithm for traffic accident rescue based on deep learning [J]. Journal of Jilin University(Engineering and Technology Edition), 2023, 53(12): 3472-3480.
[2] Ji-wei QIU,Hai-sheng LUO. Structure reliability analysis of spiral bevel gear based on hybrid uncertainties [J]. Journal of Jilin University(Engineering and Technology Edition), 2022, 52(2): 466-473.
[3] Zhen SUI,Yuan JIANG. Driver model based on transverse and longitudinal integrated control of MIMO brain-like emotional learning circuits [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 140-146.
[4] Yu-lin CHANG,Cai-hong YUAN,Chao SUN,Peng ZHANG. Calculation method for actual impedance of urban network based on improved cell transmission model [J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 132-139.
[5] Yi-ming BIE,Ru-ru TANG,Yun-hao WANG,Bin WEN,Tian-jun FENG,Lin-hong WANG. Saturation flow rate estimation method of approaching lanes at signalized intersections [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(5): 1459-1464.
[6] ZHONG Wei, JUAN Zhi-cai, SUN Bao-feng. Hierarchical hub location model for integration of urban and rural public transport in an incomplete network [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1387-1397.
[7] ZHANG Meng-nan,XU Hong-ze. Design of urban rail vehicle brake controller based on Krasovskii functionals [J]. 吉林大学学报(工学版), 2015, 45(1): 104-111.
[8] LIU Tong, LI Hai-fu, REN Li-ye, ZANG Mu-jun. Application of system identification for rehabilitation equipment-driven based on GS-SVM [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 199-203.
[9] LIN Hua-yue, ZHUO Gui-rong. Electro-hydraulic brake system model identification [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 70-73.
[10] BIE Yi-ming,WANG Dian-hai, WEI Qiang, SONG Xian-min. Conditional active and passive bus signal priority strategies considering saturation degree restriction at an isolated junction [J]. 吉林大学学报(工学版), 2011, 41(05): 1222-1227.
[11] ZHAO Hong-wei,QI Yi-ming,ZANG Xue-bai,ZHANG Xiao-lin,MA Ying-zhe. Control of milling classification using system identification
and T-S fuzzy neural network
[J]. 吉林大学学报(工学版), 2011, 41(01): 171-0175.
[12] WANG Dian-Hai, BIE Yi-Ming, SONG Xian-Min, QI Hong-Sheng. Maximum cycle length optimization method of signalized intersection [J]. 吉林大学学报(工学版), 2010, 40(增刊): 148-0151.
[13] WANG Yun-peng, SUN Wen-cai, KUI Hai-lin, LI Shi-wu, YANG Zhi-fa, LI Gu-nan. Rollover risk of tractor semitrailer with liquid hazmat tank [J]. 吉林大学学报(工学版), 2010, 40(03): 640-0644.
[14] JIANG Yue, TANG Chang-jie, LI Chuan, LI Sheng-zhi, YE Shang-yu, WU Jiang . Identification of Hammerstein model based on gene expression programming [J]. 吉林大学学报(工学版), 2008, 38(05): 1114-1119.
[15] Hou Jing-wei;Zhao Ding-xuan;Shang Tao;Tang Xin-xing . Gain switching force feedback algorithm for teleoperation robot end actuator [J]. 吉林大学学报(工学版), 2008, 38(03): 570-0574.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Liu Qing-min,Wang Long-shan,Chen Xiang-wei,Li Guo-fa. Ball nut detection by machine vision[J]. 吉林大学学报(工学版), 2006, 36(04): 534 -538 .
[3] Li Hong-ying; Shi Wei-guang;Gan Shu-cai. Electromagnetic properties and microwave absorbing property
of Z type hexaferrite Ba3-xLaxCo2Fe24O41
[J]. 吉林大学学报(工学版), 2006, 36(06): 856 -0860 .
[4] Zhang Quan-fa,Li Ming-zhe,Sun Gang,Ge Xin . Comparison between flexible and rigid blank-holding in multi-point forming[J]. 吉林大学学报(工学版), 2007, 37(01): 25 -30 .
[5] Yang Shu-kai, Song Chuan-xue, An Xiao-juan, Cai Zhang-lin . Analyzing effects of suspension bushing elasticity
on vehicle yaw response character with virtual prototype method
[J]. 吉林大学学报(工学版), 2007, 37(05): 994 -0999 .
[6] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[7] Che Xiang-jiu,Liu Da-you,Wang Zheng-xuan . Construction of joining surface with G1 continuity for two NURBS surfaces[J]. 吉林大学学报(工学版), 2007, 37(04): 838 -841 .
[8] Liu Han-bing, Jiao Yu-ling, Liang Chun-yu,Qin Wei-jun . Effect of shape function on computing precision in meshless methods[J]. 吉林大学学报(工学版), 2007, 37(03): 715 -0720 .
[9] . [J]. 吉林大学学报(工学版), 2007, 37(04): 0 .
[10] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .