吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (2): 547-553.doi: 10.13229/j.cnki.jdxbgxb201502031

• Orignal Article • Previous Articles     Next Articles

Automatic spraying robot system for aircraft surfaces and spraying operation planning

MIAO Dong-jing1,2,WU Liao1,XU Jing1,CHEN Ken1,3,XIE Ying1,LIU Zhi1   

  1. 1.Robotics & Automation LAB, Department of Mechanical Engineering, Tsinghua University, Beijing 100084,China;
    2.Natioanl Institute of Metrology,Beijing 100029,China;
    3.State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
  • Received:2013-07-26 Online:2015-04-01 Published:2015-04-01

Abstract: A robot system proposed in this paper can be used to automatic spraying for aircraft and other products with large-scale free-form surfaces. The mechanical structure and control system structure of the spray system are described. The spraying operation process is analyzed in details, and the technologies related to the spraying operation planning, such as aircraft pose calibration and spray gun trajectory planning, are studied. Based on CATIA secondary development, the control software of the spraying system is developed, which seamlessly integrates all the software operations corresponding to the whole spraying process into ACTIA platform. Spray tests on the workpiece demonstrate that the robot system is running stable and reliable with high automation, which can effectively improve the coating quality.

Key words: industrial robot technology, large-scale free-form surface, automatic spraying, spray gun trajectory planning

CLC Number: 

  • TP242
[1] 王宗田,刘立刚.ESTA喷涂机与机器人喷涂对油漆车身外观NAP值的影响[J].现代涂料与涂装,2009,12(12):28-31.
Wang Zong-tian, Liu Li-gang. The impact of ESTA spray painting equipments and robot spraying on paint body appearance NPA[J]. Modern Paint& Finishing, 2009, 12(12):28-31.
[2] 邵君奕.复杂曲管冗余喷涂机器人运动规划与振动抑制研究[D].北京:清华大学精密仪器与机械学系,2011.
Shao Jun-yi. Research on motion planning and vibration suppression for complex curved pipe redundant spraying robot[D]. Beijing:Department of Precision Instruments and Mechanology,Tsinghua University, 2011.
[3] Seegmiller N A, Bailiff J A, Franks R K. Precision robotic coating application and thickness control optimization for F-35 final finishes[J]. SAE International Journal of Aerospace, 2010, 2(1): 284-290.

[4] Lande M, Renault A, Tessler L P. Robot system[P]. United States Patent: 5138904, 1992-8-18.
[5] Berry H K. Robotic painting of aircraft using the SAFARI painting system[C]∥Aerospace and Electronics Conference. Dayton: IEEE, 1993: 862-868.
[6] 刘亚威.机器人喷涂在F-35的应用[J].航空科学技术, 2011, 7(5): 16-18.
Liu Ya-wei. Robotic approach for F-35 stealth coatings[J]. Aeronautical Science & Technology, 2011, 7(5): 16-18.
[7] Thornton J. DELMIA Simulations help Lockheed Martin Ft. Worth put final coatings on F-35 aircraft-with precision[EB/OL].[2013-06-05].http://www.microstationconnections.com/print_article.php?cpfeatureid=20917.
[8] 范玉青,梅中义,陶剑.大型飞机数字化制造工程[M].北京:航空工业出版社,2011:213-214.
[9] Arun K S, Huang T S, Blostein S D. Least-squares fitting of two 3-D point sets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
[10] 蔡自兴.机器人学[M].北京:清华大学出版社,2009:45-46.
[11] DELMIACORP. DELMIA IGRIP: The Robotic Simulation and Off-Line Programming Solution[EB/OL].[2013-04-26].http://www.gotems.co.kr/delmia/DELMIA_IGRIP.pdf.
[12] ABB Robotics. Operating Manual RobotStudio 5.15[EB/OL]. [2013-04-02]http://www.abb.com/product/seit p327/78fb236cae7e605dc1256f1e002a892c.aspx.
[13] Sheng W H, Ning X, Song M, et al. Automated CAD guided robot path planning for spray painting of compound surfaces[C]∥2000 IEEE/RSJ International Conference on Intelligent Robots and Systems. Takamatsu: IEEE, 2000:1918-1923.
[1] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[2] WANG Lin, WANG Hong-guang, SONG Yi-feng, PAN Xin-an, ZHANG Hong-zhi. Behavior planning of a suspension insulator cleaning robot for power transmission lines [J]. 吉林大学学报(工学版), 2018, 48(2): 518-525.
[3] XIE Zhi-jiang, WU Xiao-yong, FAN Nai-ji, GUO Zong-huan, YUAN Yue-jun, WANG Kang. Kinematics analysis of a precision assembly platform of SG-III [J]. 吉林大学学报(工学版), 2017, 47(5): 1504-1511.
[4] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[5] CHAI Hui, RONG Xue-wen, TANG Xing-peng, LI Yi-bin, ZHANG Qin, LI Yue-yang. Gait based planar hopping control of quadruped robot on uneven terrain with energy planning [J]. 吉林大学学报(工学版), 2017, 47(2): 557-566.
[6] YANG Zhi-yong, WU Gong-ping, WANG Wei, GUO Lei, YANG Shou-dong, CAO Qi, ZHANG Yi-jie, HU Peng. Energy saving control method of downslope speed for high-voltage transmission line inspection robot [J]. 吉林大学学报(工学版), 2017, 47(2): 567-576.
[7] ZHOU Yu, FU Cheng-long, CHEN Ken. Energy efficiency of one-legged robot hopping passively with elastically suspended load [J]. 吉林大学学报(工学版), 2016, 46(6): 1987-1994.
[8] CAO Fu-cheng, XING Xiao-xue, LI Yuan-chun, ZHAO Xi-lu. Adaptive trajectory sliding mode impedance control for lower limb rehabilitation robot [J]. 吉林大学学报(工学版), 2016, 46(5): 1602-1608.
[9] ZHANG Shuai-shuai, RONG Xue-wen, LI Yi-bin, LI Bin. Static gait planning method for quadruped robots on rough terrains [J]. 吉林大学学报(工学版), 2016, 46(4): 1287-1296.
[10] HUO Xi-jian, LIU Yi-wei, JIANG Li, XIA Jing, LIU Hong. Inverse kinematic optimization of 7R humanoid arm with joint limits [J]. 吉林大学学报(工学版), 2016, 46(1): 213-220.
[11] LIU Yi-qun, DENG Zong-quan, ZHAO Liang, DING Liang, TONG Zhi-zhong, GAO Hai-bo. Performance of walking leg of a hydraulically actuated hexapod robot [J]. 吉林大学学报(工学版), 2015, 45(5): 1512-1518.
[12] LI Zhen-hui, WANG Hong-guang, WANG Yue-chao, JIANG Yong, YUE Xiang. Line-grasping control for a power transmission line inspection robot [J]. 吉林大学学报(工学版), 2015, 45(5): 1519-1526.
[13] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions [J]. 吉林大学学报(工学版), 2015, 45(3): 884-891.
[14] CHEN Jie, MO Wei. Adaptive fuzzy sliding mode control for crawler-type mobile manipulators [J]. 吉林大学学报(工学版), 2015, 45(3): 892-898.
[15] GUAN Cheng, WANG Fei, ZHANG Deng-yu. NURBS-based time-optimal trajectory planning on robotic excavators [J]. 吉林大学学报(工学版), 2015, 45(2): 540-546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!