吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 518-525.doi: 10.13229/j.cnki.jdxbgxb20161286

Previous Articles     Next Articles

Behavior planning of a suspension insulator cleaning robot for power transmission lines

WANG Lin1, 2, 3, WANG Hong-guang1, SONG Yi-feng1, PAN Xin-an1, ZHANG Hong-zhi4   

  1. 1.State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;
    2.University of Chinese Academy of Sciences,Beijing 100049,China;
    3.College of Mechanical Engineering,Chang shu Institute of Technology, Changshu 215500,China;
    4.Jinzhou Extra-High Voltage Bureau,Jinzhou 121001,China
  • Received:2016-11-28 Online:2018-03-01 Published:2018-03-01

Abstract: To improve the autonomy of suspension insulator cleaning robot, a behavior planning method based on hierarchical structure and finite state machine is proposed. According to the structural features of the robot, the environmental characteristics and the cleaning task, the behaviors of the robot are classified into behaviors and combinational behaviors. The methods to describe these behaviors are presented and the finite state machine is used to manage the sequences of the combinational behaviors. The exceptional handling mechanism is introduced to ensure the reliable operation of the robot. Simulation and laboratory experimental results verify the correctness and effectiveness of the proposed method, which can be applied for behavior planning of the robot to perform suspension insulator cleaning task.

Key words: automatic control technology, behavior planning, finite state machine, insulator cleaning robot, power transmission lines

CLC Number: 

  • TP242
[1] Brooks R A.A robust layered control system for a mobile robot[J].IEEE Journal of Robotics and Automation, 1986,2(1): 14-23.
[2] Arkin R C.Motor schema-based mobile robot navigation[J].The International Journal of Robotics Research, 1989, 8(4): 92-112.
[3] Gat E, Desai R,Ivlev R, et al.Behavior control for robotic exploration of planetary surfaces[J].Robotics and Autonomous Systems, 1994, 10(4): 490-503.
[4] Jones J L.Robots at the tipping point: the road to iRobot Roomba[J].IEEE Robotics and Automation Magazine, 2006, 13(1): 76-78.
[5] Scheutz M, Andronache V.Architectural mechanisms for dynamic changes of behavior selection strategies in behavior-based systems[J].IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2005, 34(6): 2377-2395.
[6] Tyrrell T.Computational mechanisms for action selection[D].Edinburgh: University of Edinburgh, 1993.
[7] Arkin R C, MacKenzie D.Temporal coordination of perceptual algorithms for mobile robot navigation[J].IEEE Transactions on Robotics and Automation, 1994, 10(3): 276-286.
[8] 李恩, 梁自泽, 谭民.基于规则库的巡线机器人自主越障动作规划[J].机器人, 2005, 27(5): 400-405.
Li En, Liang Zi-ze, Tan Min.Rule base based motion planning method for inspection robot to cross obstacles autonomously[J].Robot, 2005, 27(5): 400-405.
[9] 唐栎, 房立金, 王洪光, 等.基于分布式专家系统的超高压输电线路巡检机器人控制系统的研究[J].机器人, 2004, 26(3): 267-271.
Tang Li, Fang Li-jin, Wang Hong-guang, et al.Inspection robot control system of power transmission line based on distributed expert system[J].Robot, 2004, 26(3): 267-271.
[10] 苏伟, 王吉岱, 孙爱芹, 等.高压输电线路巡检机器人的专家控制系统[J].计算机工程, 2012, 38(15): 166-168.
Su Wei, Wang Ji-dai, Sun Ai-qin, et al.Expert control system of inspection robot for high voltage transmission line[J].Computer Engineering, 2012, 38(15): 166-168.
[11] 任志斌, 阮毅.基于知识库的输电线路巡检机器人的越障控制[J].计算机工程与应用, 2008, 44(3): 236-239.
Ren Zhi-bin, Ruan Yi.Obstacle-navigation control of inspection robot for power transmission lines based on knowledge base[J].Computer Engineering and Applications, 2008, 44(3): 236-239.
[12] 邬大为, 阮毅, 任志斌.基于产生式系统和轨迹优化的巡线机器人控制[J].计算机工程与设计, 2008, 29(11): 2868-2870.
Wu Da-wei, Ruan Yi, Ren Zhi-bin.Inspection robot control system of power transmission line based on production system and trajectory optimization[J].Computer Engineering and Design, 2008, 29(11): 2868-2870.
[13] 郭伟斌, 王洪光, 姜勇, 等.一种输电线路巡检机器人越障规划方法[J].机器人, 2012, 34(4): 505-512.
Guo Wei-bin, Wang Hong-guang, Jiang Yong, et al.Obstacle navigation planning for a power transmission line inspection robot[J].Robot, 2012, 34(4): 505-512
[14] 宋屹峰, 王洪光, 李贞辉, 等.基于视觉方法的输电线断股检测与机器人行为规划[J].机器人, 2015, 37(2): 204-211,213.
Song Yi-feng, Wang Hong-guang, Li Zhen-hui, et al.Vision based transmission line broken strand detection and robot behavior planning [J].Robot, 2015, 37(2): 204-211,213.
[15] 姜勇, 王洪光, 房立金.基于主动试探的微小型爬壁机器人步态控制[J].机械工程学报, 2009, 45(7): 56-62.
Jiang Yong, Wang Hong-guang, Fang Li-jin.Gait control of micro wall-climbing robot based on initiative exploration[J].Journal of Mechanical Engineering, 2009, 45(7): 56-62.
[16] Steenstrup M, Arbib M A, Manes E G.Port automata and the algebra of concurrent processes[J].Journal of Computer and System Sciences, 1983, 27(1): 29-50.
[17] 唐鸿儒, 宋爱国, 章小兵.基于宏行为的侦察机器人事务执行机制研究[J].机器人, 2007, 29(2): 97-105.
Tang Hong-ru, Song Ai-guo, Zhang Xiao-bing.Mission execution mechanism of reconnaissance robot based on macro behavior[J].Robot, 2007, 29(2): 97-105.
[18] Murphy R R.Introduction to AI Robotics[M].London: MIT Press, 2000: 174-183.
[1] GU Wan-li,WANG Ping,HU Yun-feng,CAI Shuo,CHEN Hong. Nonlinear controller design of wheeled mobile robot with H performance [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1811-1819.
[2] LI Zhan-dong,TAO Jian-guo,LUO Yang,SUN Hao,DING Liang,DENG Zong-quan. Design of thrust attachment underwater robot system in nuclear power station pool [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1820-1826.
[3] WANG De-jun, WEI Wei-li, BAO Ya-xin. Actuator fault diagnosis of ESC system considering crosswind interference [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1548-1555.
[4] YAN Dong-mei, ZHONG Hui, REN Li-li, WANG Ruo-lin, LI Hong-mei. Stability analysis of linear systems with interval time-varying delay [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1556-1562.
[5] TIAN Yan-tao, ZHANG Yu, WANG Xiao-yu, CHEN Hua. Estimation of side-slip angle of electric vehicle based on square-root unscented Kalman filter algorithm [J]. 吉林大学学报(工学版), 2018, 48(3): 845-852.
[6] ZHANG Shi-tao, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, TIAN Da-peng. Enhancing performance of FSM based on zero phase error tracking control [J]. 吉林大学学报(工学版), 2018, 48(3): 853-858.
[7] HU Yun-feng, WANG Chang-yong, YU Shu-you, SUN Peng-yuan, CHEN Hong. Structure parameters optimization of common rail system for gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 236-244.
[8] ZHU Feng, ZHANG Bao, LI Xian-tao, WANG Zheng-xi, ZHANG Shi-tao. Gyro signal processing based on strong tracking Kalman filter [J]. 吉林大学学报(工学版), 2017, 47(6): 1868-1875.
[9] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[10] FENG Jian-xin. Recursive robust filtering for uncertain systems with delayed measurements [J]. 吉林大学学报(工学版), 2017, 47(5): 1561-1567.
[11] XU Jin-kai, WANG Yu-tian, ZHANG Shi-zhong. Dynamic characteristics of a heavy duty parallel mechanism with actuation redundancy [J]. 吉林大学学报(工学版), 2017, 47(4): 1138-1143.
[12] HU Yun-feng, GU Wan-li, LIANG Yu, DU Le, YU Shu-you, CHEN Hong. Start-stop control of hybrid vehicle based on nonlinear method [J]. 吉林大学学报(工学版), 2017, 47(4): 1207-1216.
[13] SHEN Shuai, ZHANG Bao, LI Xian-tao, ZHU Feng, JIN Chao-qiong. Acceleration feedback control based on tracking differentiator [J]. 吉林大学学报(工学版), 2017, 47(4): 1217-1224.
[14] SHAO Ke-yong, CHEN Feng, WANG Ting-ting, WANG Ji-chi, ZHOU Li-peng. Full state based adaptive control of fractional order chaotic system without equilibrium point [J]. 吉林大学学报(工学版), 2017, 47(4): 1225-1230.
[15] WANG Chun-yang, XIN Rui-hao, SHI Hong-wei. Decreasing time delay auto-disturbance rejection control method for large time delay systems [J]. 吉林大学学报(工学版), 2017, 47(4): 1231-1237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[9] YUAN Chao-chun, ZHANG Long-fei, CHEN Long, HE You-guo, FAN Xing-gen. Braking performance of active collision avoidance system based on road identification[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[10] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .