吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (3): 953-960.doi: 10.13229/j.cnki.jdxbgxb201503039

Previous Articles     Next Articles

Influence of tilting angle on tilting sampling aliasing and relationship between aliasing and resolution

WANG Jing-meng1, 2, 3, 4, ZHANG Ai-wu1, 2, 3, 4, ZHAO Ning-ning1, 2, 3, 4, MENG Xian-gang1, 2, 3, 4   

  1. 1.College of Resources Environment and Tourism,Capital Normal University,Beijing 100048,China;
    2.Laboratory of 3D Information Acquisition and Application,MOST,Beijing 100048,China;
    3.Beijing Municipal Key Laboratory of Resources Environment and GIS, Beijing 100048,China;
    4.State Key Laboratory Incubation Base of Urban Environmental Processes and Digital Simulation, Beijing 100048,China
  • Received:2013-09-23 Online:2015-05-01 Published:2015-05-01

Abstract: In tilting sampling the relationships between the selection of tilting angle and the spectral aliasing as well as the resolution are ambiguous. To overcome this problem, the source of the spatial aliasing is analyzed based on sampling theory, and an Aliasing Index (AI) is designed, which measures the extent of aliasing. In addition, the effective spatial resolution is introduced to analyze the relationships among the titling angle, spectral aliasing and effective resolution. Results show that, under the same condition, within the tilting angle range from 57° to 89°, the aliasing and spatial effective resolution in tilting sampling are higher than that in normal sampling; the tilting angle corresponding to the minimum aliasing is 78°, and that corresponding to the maximum spatial effective resolution is 75°. Curve fitting shows that the spectral aliasing and the effective spatial resolution are power-law correlated. It is helpful to understand the relationship between aliasing and resolution with various titling angles for practical application to meet specific need.

Key words: photogrammetry and remote sensing, aliasing index, optimal reciprocal cell, tilting sampling, spatial effective resolution

CLC Number: 

  • TP751.1
[1] Chen Z, Karim M A, Hayat M M. Elimination of higher order aliasings by multiple interlaced sampling[J]. Optical Engineering,1999,38(5):879-885.
[2] Almansa A,Durand S,Rougé B. Measuring and improving image resolution by adaptation of the reciprocal cell[J]. Journal of Mathematical Imaging and vision,2004,21(3):235-279.
[3] 孟庆武,孟新. 联合估计混叠度,运动参数和高分辨率图像的JEMAP算法[J]. 计算机科学,2004,31(6):184-188.
Meng Qing-wu,Meng Xin. Joint estimation MAP algorithm of aliasing degree,registration parameters and high-resolution image[J]. Computer Science,2004,31(6):184-188.
[4] 范冲,龚健雅,朱建军. 一种基于去混叠影像配准方法的POCS超分辨率序列图像重建[J]. 测绘学报,2006,35(11):358-363.
Fan Chong,Gong Jian-ya,Zhu Jian-jun. POCS super-resolution sequence image reconstruction based on image registration excluded aliased frequency domain[J]. Acta Geodaetica et Cartographica Sinica,2006,35(11):358-363.
[5] 张智. 面向遥感图像的倒易晶胞复原方法研究[D]. 南京:南京理工大学计算机科学与技术学院,2008.
Zhang Zhi. Research on reciprocal cell restoration oriented to remote sensing image[D]. Nanjing:School of Computer Science and Technology,Nanjing University of Science &Technology,2008.
[6] 郑钰辉,汤杨,陈强,等. 提高斜模式遥感图像有效分辨率的方法[J]. 计算机辅助设计与图形学学报,2009,21(2):243-249.
Zheng Yu-hui,Tang Yang,Chen Qiang,et al. A method for increasing effective resolution of tilting mode satellite image[J]. Journal of Computer-aided Design & Computer Graphics,2009,21(2):243-249.
[7] 高陆云. 基于倒易晶胞的遥感图像恢复技术研究[D]. 南京:南京理工大学计算机科学与技术学院, 2009.
Gao Lu-yun. Technology of restoration of remote sensing image based on reciprocal cell[D]. Nanjing: School of Computer Science and Technology,Nanjing University of Science &Technology,2009.
[8] 周峰,王怀义,马文坡,等. 提高线阵采样式光学遥感器图像空间分辨率的新方法研究[J]. 宇航学报,2006,27(2):227-232.
Zhou Feng,Wang Huai-yi,Ma Wen-po,et al.A study on a new method for improving image spatial resolution of sampled optical imager with single array[J].Journal of Astronautics,2006,27(2):227-232.
[9] 周峰. 提高采样式光学遥感器图像空间分辨率的方法研究[D]. 北京:中国空间技术研究院, 2005.
Zhou Feng. A method of improving the resolution of optical remote sensor image[D]. Beijing:China Academy of Space Technology,2005.
[10] Ambrosio L. A compactness theorem for a special class of functions of bounded variation[J]. Boll Un Mat Ital,1988,3-B(7):857-881.
[11] Ambrosio L, Fusco N, Pallara D. Functions of Bounded Variation and Free Discontinuity Problems[M]. New York:Oxford University Press, 2000.
[12] Evans L C, Gariepy R F. Measure Theory and Fine Properties of Functions[M]. Boca Raton:CRC Press, 1992.
[13] Giusti E. Minimal Surfaces and Functions of Bounded Variation[M]. Boston:Birkhäuser,1984.
[14] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena,1992,60(1):259-268.
[15] 罗群利. 四阶向量值图像去噪问题的快速算法[D]. 长沙: 湖南大学数学与计量经济学院, 2012.
Luo Qun li. A fast algorithm for forth-order vector-valuedimage denoising[D]. Changsha: College of Mathematics and Econometrics,Hunan University,2012.
[16] 郑钰辉. 空域自适应滤波方法及其在斜模式遥感图像复原中的应用[D]. 南京:南京理工大学计算机科学与技术学院,2009.
Zheng Yu hui. Spatial adaptive filter methods and theirs applications in the tilting mode satellite image restoration[D]. Nanjing:School of Computer Science and Technology,Nanjing University of Seience and Technolog,2009.
[17] 王静,徐丽燕,夏德深. 斜采样技术的混叠分析及分辨率计算[J]. 电子学报,2012,40(5):1067-1072.
Wang Jing,Xu Li-yan,Xia De-shen. The aliasing analysis and resolution calculation of tilting sampling system[J]. Acta Electronica Sinica, 2012,40(5):1067-1072.
[18] 周峰,乌崇德. 提高航天传输型CCD相机地面像元分辨率方法研究[J]. 航天返回与遥感,2002,23(3):35-42.
Zhou Feng,Wu Chong-de. A method for improving GSD of Space Real-time transmission CCD Camera[J]. Spacecraft Recovery&Remote Sensing,2002,23(3):35-42.
[19] 王静. 基于成像系统建模提高遥感图像分辨率方法研究[D]. 南京: 南京理工大学计算机科学与技术学院, 2012.
Wang Jing. Research on acquisition System modeling based remote sensing image resolution improvement[D].Nanjing: School of Computer Science and Technology,Nanjing University of Science and Technology,2012.
[1] JIANG Chao, GENG Ze-xun, LIU Li-yong, PAN Ying-feng. Maximum likelihood image restoration combined with image denoising [J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[2] LI Hui-hui, HUA Li, YANG Ning, LIU Kun. Multi-target association algorithm for remote sensing images based on MSA features and simulated annealing optimization [J]. 吉林大学学报(工学版), 2015, 45(4): 1353-1359.
[3] CAO Jian-nong, GUO Jia, WANG Bei, DONG Yu-wei, WANG Ping-lu. Multi-scale method of urban tree canopy clustering recognition in high-resolution images [J]. 吉林大学学报(工学版), 2014, 44(4): 1215-1224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!