吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (4): 1353-1359.doi: 10.13229/j.cnki.jdxbgxb201504047

Previous Articles     Next Articles

Multi-target association algorithm for remote sensing images based on MSA features and simulated annealing optimization

LI Hui-hui1, HUA Li1, YANG Ning1, LIU Kun2   

  1. 1.College of Automation, Northwestern Polytechnical University, Xi'an 710072,China;
    2.School of Information Engineering, Shanghai Maritime University, Shanghai 200135, China
  • Received:2013-12-01 Online:2015-07-01 Published:2015-07-01

Abstract: Since the current remote sensing imaging techniques can only get sparse sampling remote images, which are unable to accurately estimate the target state information, so the traditional association method using state features is not suitable for remote sensing image target. If the time independent image features are selected as the associative volume, the ambiguity induced by the association multiple targets in big scene can not be handled. To solve the above problem, a multi-scale autoconvolution feature matching and simulated annealing optimization algorithm is proposed. First, the MSA features are extracted and the matching probability between features is calculated to construct the whole association cost matrix. Then, the adaptive temperature updating function and the double threshold are set to improve the simulated annealing algorithm for quick search of the global optimal solution. Experimental results show that the proposed algorithm can effectively use the feature information of remote sensing image, eliminate association ambiguity and solve the problem of multi-target association efficiently.

Key words: photogrammetry and remote sensing, target association, msa feature, association cost matrix, simulated annealing algorithm

CLC Number: 

  • TP751
[1] 雷琳.多源遥感图像舰船目标特征提取和融合技术研究[D].长沙:国防科技大学电子科学与工程学院,2008. Lei Lin. Ship feature extraction and fusion in multiple remote sensing images[D]. Changsha: School of Electronic Science and Engineering,National University of Defense Technology, 2008.
[2] Bar-shalom Y, Sherlukde H M, Pattipati K R. Use of measurements from an image sensor for precision target tracking[J]. IEEE Trans AES, 1989, 25(6):863-871.
[3] Bar Shalom Y. Extension of the probabilistic data association filter in multi-target tracking[C]∥Proceedings of the 5th symposium on nonlinear estimation, 1974:16-21.
[4] Blackman S, Dempster R J, Broida T J. Multiple hypothesis track confirmation for infrared surveillance systems[J]. IEEE Trans AES, 1993, 29(3):810-823.
[5] 董学志, 宋建中, 韩广良.一种利用Gabor小波特征的目标跟踪方法[J].光学技术,2003,29(4):484-486. Dong Xue-zhi, Song Jian-zhong, Han Guang-liang. Target tracking method using wavelet feature[J]. Optical Technique, 2003,29(4):484-486.
[6] 姚剑, 刘其真, 张斌.模糊技术与神经网络的混合算法在运动目标识别与跟踪中的应用[J].计算机工程与应用, 2000,1:62-64. Yao Jian, Liu Qi-zhen, Zhang Bin. The application of combination of fuzzy algorithms and neural network in tracking moving object[J].Computer Engineering and Applications, 2000,1:62-64.
[7] Hu M K. Pattern recognition by moment invariant[C]∥Proc IRE, 1961, 49: 1428-1436.
[8] Rahtu E,Salo M,Heikkila J.Affine invariant pattern recognition using multi-scale auto convolution[J].IEEE Transactions on Pattern analysis and Machine Intelligence,2005,27(6):908-918.
[9] 雷琳, 蔡红苹, 唐涛, 等.基于MSA特征的遥感图像多目标关联算法[J].遥感学报,2008, 12(4):586-592. Lei Lin, Cai Hong-ping, Tang Tao, et al. A MSA feature-based multiple targets association algorithm in remote sensing images[J]. Journal of Remote Sensing, 2008, 12(4):586-592.
[10] Bar-Shalom Y, Kirubarajan T, Gokberk C. Tracking with classification aided multiframe data assoeiation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3):868-878.
[11] Mandal A K, Pal S, De A K, et al. Novel approach to identify good tracer clouds from a sequence of satellite images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4):813-818.
[12] Krickpatric S, Gelett J C D, Vecchi M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
[13] Winkler G. Image Analysis,Random Fields and Dynamic Monte Carlo Methods[M]. Berlin: Springer-Verlag, 1999.
[14] 高尚.模拟退火算法中的退火策略研究[J].航空计算技术, 2002,32(4):20-26. Gao Shang. Research on annealing strategy in simulated annealing algorithm[J]. Aeronautical Computer Technique, 2002,32(4):20-26.
[1] DAI Cun-jie,LI Yin-zhen,MA Chang-xi,CHAI Huo,MU Hai-bo. Multi-criteria optimization for hazardous materials distribution routes under uncertain conditions [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1694-1702.
[2] JIANG Chao, GENG Ze-xun, LIU Li-yong, PAN Ying-feng. Maximum likelihood image restoration combined with image denoising [J]. 吉林大学学报(工学版), 2015, 45(4): 1360-1366.
[3] WANG Jing-meng, ZHANG Ai-wu, ZHAO Ning-ning, MENG Xian-gang. Influence of tilting angle on tilting sampling aliasing and relationship between aliasing and resolution [J]. 吉林大学学报(工学版), 2015, 45(3): 953-960.
[4] HAN Xiao,LIU Shu-fen,XU Tian-qi. Improved K-medoids algorithm based on genetic simulated annealing algorithm [J]. 吉林大学学报(工学版), 2015, 45(2): 619-623.
[5] CAO Jian-nong, GUO Jia, WANG Bei, DONG Yu-wei, WANG Ping-lu. Multi-scale method of urban tree canopy clustering recognition in high-resolution images [J]. 吉林大学学报(工学版), 2014, 44(4): 1215-1224.
[6] LIU Luo, GUO Li-hong, XIAO Hui, WANG Jian-jun, WANG Gai-ge. Software reliability growth model based on SAA-DFNN [J]. , 2012, 42(05): 1225-1230.
[7] LI Yu-qing, XU Min-qiang, WANG Ri-xin . Scheduling observations of spot object of threeaxis stabilized satellites [J]. 吉林大学学报(工学版), 2008, 38(06): 1447-1451.
[8] Li Bao-lin; Li Zhi-shu;Jin Hu; Sun Ji-rong;Chen Yan-hong. Test case generation base on R_N(K) criterion annealing algorithm [J]. 吉林大学学报(工学版), 2008, 38(03): 680-0684.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!