吉林大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (4): 1215-1224.doi: 10.13229/j.cnki.jdxbgxb201404048

Previous Articles    

Multi-scale method of urban tree canopy clustering recognition in high-resolution images

CAO Jian-nong, GUO Jia, WANG Bei, DONG Yu-wei, WANG Ping-lu   

  1. School of Earth Science and Resources, Chang'an University, Xi'an 710054, China
  • Received:2013-08-12 Online:2014-07-01 Published:2014-07-01

Abstract: A constrained mean shift method for extracting urban tree canopy of high-resolution images is presented. First, a wavelet is decomposed and a layered pyramid structure is established. Using a specific window, the mean of the low-frequency coefficient and the standard deviation of the high-frequency coefficient of each wavelet layer are computed. The computed mean and standard deviation are used to constitute a feature space in each layer; a multi-scale pyramid image feature space is constituted. Second, from the top of the pyramid, the mean shift of each layer is computed from the top layer of the pyramid, and the scale transfer between layers is carried out. The scale transfer may cause the feature space even more unsmooth, so a constrained mean shift method is adopted to realize preliminary urban tree canopy clustering segmentation. Finally, as the distinction of features in a feature space is difficult to guarantee the clustering accuracy at the edge, a further supervised segmentation method based on clustering features is taken to extract the tree canopy. Experiment results demonstrate that compared with traditional supervised methods and unsupervised methods, the proposed method can eliminate the effects of over-detailed images and other factors caused by high-resolution on extracting urban tree canopy.

Key words: photogrammetry and remote sensing technology, image segmentation, high-resolution images, constrained mean shift, wavelet

CLC Number: 

  • P237
[1] 周一凡, 周坚华. 绿量快速测算模式[J].生态学报, 2006, 26(12):4204-4212. Zhou Yi-fan, Zhou Jian-hua. Fast method to detect and calculate LVV[J]. Acta Ecologica Sinica, 2006, 26 (12): 4204-4212.
[2] Müllerová J J, Pergl J, Pyšek P. Remote sensing as a tool for monitoring plant invasions: testing the effects of data resolution and image classification approach on the detection of a model plant species Heracleum mantegazzianum (giant hogweed)[J].International Journal of Applied Earth Observation and Geoinformation, 2013, 25:55-65.
[3] 覃先林, 李增元, 易浩若. 高空间分辨率卫星遥感影像树冠信息提取方法研究[J].遥感技术与应用, 2005, 20(2): 228-232. Qin Xian-lin, Li Zeng-yuan, Yi Hao-ruo. Extraction method of tree crown using high-resolution satellite image[J]. Remote Sensing Technology and Application, 2005, 20(2): 228-232.
[4] Chang A, Eo Y, Kim Y, et al. Identification of individual tree crowns from LiDAR data using a circle fitting algorithm with local maxima and minima filtering[J]. Remote Sensing Letters, 2013, 4(1):29-37.
[5] Myint S W, Lam N S N, Tylor J M. Wavelets for urban spatial feature discrimination: comparisons with fractal, spatial autocorrelation, and spatial co-occurrence approaches[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(7): 803-812.
[6] 王爽, 夏玉, 焦李成, 基于均值漂移的自适应纹理影像分割方法[J].软件学报, 2010, 21(6):1451-1461. Wang Shuang, Xia Yu, Jiao Li-chen. Mean shift based adaptive texture image segmentation method[J]. Journal of Software, 2010, 21(6): 1451-1461.
[7] Cheng Y Z. Mean shift, mode seeking, and clustering[J]. Pattern Analysis and Machine Intelligence, 1995, 17(8): 790-799.
[8] Dorin C, Peter M. Distribution free decomposition of multivariate data[J]. Pattern Analysis and Applications, 1999, 2(1): 22-30.
[9] Comaniciu D, Meer P. Mean shift: a robust approach toward feature space analysis[J]. Pattern Analysis and Machine Intelligence, 2002, 24(5): 603-619.
[10] Sheather S, Jones M. A reliable data-based bandwidth selection method for kernel density estimation[J]. Journal of the Royal Statistical Society: Serious B, 1991, 53(3): 683-690.
[11] Comaniciu D, Ramesh V, Meer P. The variable bandwidth mean shift and data-driven scale selection[C]∥Proceedings 8th IEEE International Conference on Computer Vision, Stoughton: The Printing House, 2001: 438-445.
[12] Liang K H, Tjahjadi T. Adaptive scale fixing for multiscale texture segmentation[J]. IEEE Transaction on Image Processing, 2006, 15(1): 249-256.
[13] Freixenet J, Muñoz X, Raba D, et al. Yet another survey on image segmentation: region and boundary information integration[C]∥The 7th European Conference on Computer Vision, Copenhagen, Berlin: Springer, 2002: 408-422.
[14] 蒲智, 刘萍, 杨辽, 等. 城市绿地信息提取中的遥感影像阴影校正[J].北京林业大学学报, 2009, 31(2):80-85. Pu Zhi, Liu Ping, Yang Liao, et al. Shadow rectification of remote sensing images in information extraction for urban green space[J]. Journal of Beijing Forestry University, 2009, 31(2): 80-85.
[1] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[2] XIAO Ming-yao, LI Xiong-fei, ZHANG Xiao-li, ZHANG Liu. Medical image segmentation algorithm based on multi-scale region growing [J]. 吉林大学学报(工学版), 2017, 47(5): 1591-1597.
[3] LIU Zhong-min, LI Zhan-ming, LI Bo-hao, HU Wen-jin. Spectral clustering image segmentation based on sparse matrix [J]. 吉林大学学报(工学版), 2017, 47(4): 1308-1313.
[4] ZHAO Fu-qun, ZHOU Ming-quan, GENG Guo-hua. Image threshold segmentation with GA-Otsu method and quantitative identification [J]. 吉林大学学报(工学版), 2017, 47(3): 959-964.
[5] LIU Hai-ou, ZHANG Guo-xin, XI Jun-qiang, ZHANG Hong-yan, XU Yi. Dynamic load spectrum signal de-noising of tracked vehicle transmission [J]. 吉林大学学报(工学版), 2017, 47(1): 42-49.
[6] XIAO Ming-yao, LI Xiong-fei. Multi-scale 3D Otsu thresholding algorithm based on Gaussian decomposition [J]. 吉林大学学报(工学版), 2017, 47(1): 255-261.
[7] WANG Pei-zhi, TIAN Di, LONG Tao, LI Di-fei, QIU Chun-ling, LIU Dun-yi. Automatic focusing algorithm for TOF-SIMS zircon sample image [J]. 吉林大学学报(工学版), 2017, 47(1): 308-315.
[8] CHE Xiang-jiu, LIANG Sen. Improved algorithm of SPIHT based on Max-Heap tree [J]. 吉林大学学报(工学版), 2016, 46(3): 865-869.
[9] JI Yan-jie, CHEN Xiao-shi, WANG Wei, HU Bo. Short-term forecasting of parking space using particle swarm optimization-wavelet neural network model [J]. 吉林大学学报(工学版), 2016, 46(2): 399-405.
[10] SHEN Xuan-jing, ZHANG He, CHEN Hai-peng, WANG Yu. Fast recursive multi-thresholding algorithm [J]. 吉林大学学报(工学版), 2016, 46(2): 528-534.
[11] ZHENG Xin, PENG Zhen-ming, XING Yan. Novel method of evaluating image segmentation algorithms based on activity degree [J]. 吉林大学学报(工学版), 2016, 46(1): 311-317.
[12] MO Chou, CHEN Ji-qing, LAN Feng-chong. Inverse sub-structuring transfer path analysis method [J]. 吉林大学学报(工学版), 2015, 45(6): 1751-1756.
[13] XIAO Zhong-jie. Recognition of digital image based on wavelet space feature spectrum entropy [J]. 吉林大学学报(工学版), 2015, 45(6): 1994-1998.
[14] LI Yi-bing, YANG Peng, YE Fang, LIU Dan-dan. Texture image segmentation using hierarchical MRF model based on the interactive potential function and mean-field parameter estimation [J]. 吉林大学学报(工学版), 2015, 45(6): 2075-2079.
[15] SUN Shu-qin, MENG Qing-yun, FANG Xiu-cheng, LIN Jun, WANG Ying-ji, TIAN Bao-feng, YANG Nan. Noise cancellation algorithm for surface magnetic resonance signals based on self-adaption and reconstruction of wavelet modulus maximum value [J]. 吉林大学学报(工学版), 2015, 45(5): 1642-1651.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!