吉林大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (6): 1906-1912.doi: 10.13229/j.cnki.jdxbgxb201506026

Previous Articles     Next Articles

Design of robust controller for robot flexible joint with friction characteristic

CHEN Jian, GE Lian-zheng, LI Rui-feng   

  1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
  • Received:2014-03-17 Online:2015-11-01 Published:2015-11-01

Abstract: A robust controller framework for flexible joint robot is presented, in which the effect of nonlinear friction on control performance is considered. The nonlinear friction is denoted as inverse additive output uncertainty relative to the nominal model. Based on this the describing function is analyzed in frequency domain, and the weighting function of nonlinear friction is further calculated. Combing the friction uncertainty, the Linear Matrix Inequality (LMI) optimization is proposed as the benchmark for controller design, which leads to good performance robustness. Simulation results show that the proposed controller can provide excellent command tracking and regulation performance.

Key words: robot joint with flexibility, nonlinear friction, describing function method, robust control

CLC Number: 

  • TP241.2
[1] Moberg S, Hanssen S. On feedback linearization for robust tracking control of flexible joint robots[J]. World Congress, 2008, 17(1):12218-12223.
[2] Yeon J S, Park J H. Practical robust control for flexible joint robot manipulators[C]∥IEEE International Conference on Robotics and Automation,California, USA,2008:3377-3382.
[3] Akbari M E, Alizadeh G, Khanmohammadi S, et al. Nonlinear H ∞ controller for flexible joint robots with using feedback linearization[J]. International Journal on Computer Science & Engineering, 2011, 3(2):451-466.
[4] Elmaraghy H A, Lahdhiri T. Robust linear control of flexible joint robot systems[J]. Journal of Intelligent and Robotic Systems,2002,34(4):335-356.
[5] Patel A,Neelgund R,Wathore A,et al. Robust control of flexible joint robot manipulator[C]∥Industrial Technology,Mumbai,2006:649-653.
[6] Akbari M, Alizadeh G, Khanmohammadi S, et al. Nonlinear H ∞ controller for flexible joint robots with using feedback linearization[J]. International Journal of Engineering Science,2011,3(4):451-466.
[7] Yim J G, Yeon J S, Park J H, et al. Robust control using recursive design method for flexible joint robot manipulator[C]∥IEEE International Conference on Robotics and Automation, Roma, Italy,2007:3805-3810.
[8] Karlsson A P. Tool position estimation of a flexible industrial robot using recursive bayesian methods[J]. Proceedings IEEE International Conference on Robotics & Automation, 2012, 20(10):5234 - 5239.
[9] Nassirharand A, Firdeh S R M. Computer-aided design of nonlinear H ∞ controllers using describing functions[C]∥Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, Munich,Germany,2006:1952-1957.
[10] 刘国平. 机械系统中的摩擦模型及仿真[D]. 西安:西安理工大学机械与精密仪器工程学院,2007:35-37.
Liu Guo-ping. Mechanical friction system model and simulation[D]. Xi'an:Mechanical and Precision Instrument Engineering, Xi'an University of Technology, 2007: 35-37.
[11] Moghaddam M, Andrew A. On robust control of flexible joint robots using describing function and sector bounded nonlinearity descriptions[J]. Journal of Intelligent and Robotic Systems,1997,20(2):333-348.
[12] Feeny B, Moon F C. Chaos in a forced dry-friction oscillator: experiments and numerical modelling[J]. Journal of Sound & Vibration, 1994, 170(3):303-323.
[13] Wernholt E, Gunnarsson S. Nonlinear identification of a physically parameterized robot model[J]. Control Engineering,2006,14(1):143-148.
[14] Schwartz C, Gran R. Describing function analysis using Matlab and simulink[J]. Control Systems, 2001,21(4):19-26.
[15] Scherer C, Gahinet P, Chilali M. Multiobjective output-feedback control via LMI optimization[J]. IEEE Transactions on Automatic Control,1997,42(7):896-911.
[1] LI Jing, ZHANG Jia-xu. H Robust control for integrated chassis system based on state feedback [J]. 吉林大学学报(工学版), 2016, 46(3): 685-691.
[2] QIAN Li-jun, HU Wei-long, XIN Fu-long, QIU Li-hong. Controlling of vehicle lateral movement based on robust H theory [J]. 吉林大学学报(工学版), 2015, 45(6): 1757-1762.
[3] JIAO De-yu. Robust trajectory tracking control of four-wheel mobile car [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 301-305.
[4] CHANG Sheng,XU Hong-guo,LIU Hong-fei. H loop shaping robust controller design for tractor-semitrailer [J]. 吉林大学学报(工学版), 2011, 41(6): 1571-1576.
[5] QI Pan-guo, WANG Hui, HAN Jun-wei. Structured singular value-synthesis based robust control of hydraulic control loading system [J]. 吉林大学学报(工学版), 2011, 41(4): 1004-1009.
[6] SU Wen-hai,JIANG Ji-hai,WANG Xiao-jing,LIU Jun-long. Quantitative feedback robust control for direct drive electro-hydraulic servo rotary vane steering gear [J]. 吉林大学学报(工学版), 2011, 41(03): 670-675.
[7] SUN Hui,JIANG Ji-hai,WANG Xin. Quantitative feedback robust controller design for hydrostatic transmission hybrid vehicle [J]. 吉林大学学报(工学版), 2009, 39(06): 1538-1543.
[8] WANG Xiao-bing,CHEN Jian-jun,CHEN Yong-qin,XIE Yong-qiang,CHEN Long . Robust control of uncertain piezothermoelasticity intelligent laminated plate with small interval parameters [J]. 吉林大学学报(工学版), 2009, 39(01): 182-187.
[9] LI Yan-jiang, DUAN Guang-ren . Robust passive control for discretetime T-S fuzzy systems [J]. 吉林大学学报(工学版), 2008, 38(05): 1208-1214.
[10] Gao Wei, Li Yuan-chun, Zhou Miao-lei . Robust fuzzy double closedloop control of diesel [J]. 吉林大学学报(工学版), 2007, 37(05): 1170-1174.
[11] Zhang Tao;Li Yuan-chun . Robust controller design for uncertain systems with input
delay based on LMI approach
[J]. 吉林大学学报(工学版), 2006, 36(06): 924-0928.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!