吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 492-499.doi: 10.13229/j.cnki.jdxbgxb20170083

Previous Articles     Next Articles

Effect of the size of discrete phase abrasive particles on the abrasive flow polishing quality of common rail pipe

LI Jun-ye1, 2, HU Jing-lei1, YANG Zhao-jun2, ZHANG Xin-ming1, ZHOU Zeng-wei1   

  1. 1. College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun 130022,China;
    2. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China
  • Received:2017-01-31 Online:2018-03-01 Published:2018-03-01

Abstract: In order to study the effect of abrasive grain size on abrasive flow polishing, common rail pipe was selected as the research object. By calculation the state of abrasive grain flow under different grain sizes, the discrete phase analysis of the flow field was carried out from the dynamic pressure, the velocity field, the abrasive grain trajectory and the turbulent kinetic energy. From the numerical analysis shows that, with the increase in the grain size, the dynamic pressure, the velocity and the turbulent kinetic energy are reduced and the grinding effect is weakened. The trajectory of the abrasive grain can be used to predict and theoretically guide the optimal control of the abrasive grinding path and the production process, thus achieving effective and accurate polishing. The surface roughness and the surface topography of the common rail pipe were measured before and after abrasive flow grinding. The surface roughness was 3.401 μm before the grinding and was 1.138 μm after the grinding. This verifies the effectiveness of abrasive flow polishing workpiece with inner channel structure, and confirms the correctness of the numerical analysis. This work may provide theoretical support for the development of abrasive grinding technology.

Key words: machinery manufacturing technology and equipment, common rail pipe, discrete phase, abrasive particle size, polishing quality

CLC Number: 

  • TH161.1
[1] 段炼,袁寿其,胡林峰,等. 高压共轨喷油器控制阀空化研究[J].农业机械学报,2015,46(5):321-327.
Duan Lian, Yuan Shou-qi, Hu Lin-feng, et al. Cavitation analysis of control-valve in high-pressure common rail injector[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 321-327.
[2] 李俊烨,许颖,杨立峰,等. 非直线管零件的磨粒流加工实验研究[J].中国机械工程,2014,25(13):1729-1734.
Li Jun-ye, Xu Ying, Yang Li-feng, et al. Research on abrasive flow machining experments of non-linear tubes[J]. China Mechanical Engineering, 2014, 25(13): 1729-1734.
[3] Li Jun-ye, Yang Li-feng, Liu Wei-na, et al. Experimental research into technology of abrasive flow machining non-linear tube runner[J]. Advances in Mechanical Engineering, 2014, 752353:1-9.
[4] 尹延路,滕 琦,李俊烨,等. 基于大涡数值模拟的磨粒流流场仿真分析[J].机电工程,2016,33(5):537-541.
Yin Yan-lu, Teng Qi, Li Jun-ye, et al.Simulated a nalysis based on large eddy numerical simulation for abrasive flow field[J]. Journal of Mechanical & Electrical Engineering, 2016, 33(5): 537-541.
[5] 计时鸣,黄希欢,谭大鹏,等. 气-液-固三相磨粒流光整加工及其工艺参数优化[J].光学精密工程,2016,24(4):855-864.
Ji Shi-ming, Huang Xi-huan, Tan Da-peng, et al.Gas-liquid-solid abrasive flow polishing and its process parameter optimization[J]. Optics and Precision Engineering, 2016, 24(4): 855-864.
[6] Uhlmann E, Schmiedel C, Wendler J. CFD simulation of the abrasive flow machining process[J]. 15th CIRP Conference on Modeling of Machining Operations, 2015, 31: 209-214.
[7] 吴桂玲,侯吉坤. 共轨管小孔磨粒流加工特性三维数值分析[J].航空制造技术,2014,466(22):158-160.
Wu Gui-ling, Hou Ji-kun. Three-dimensional numerical analysis for micro-hole abrasive flow machining feature of the common-rail tube[J]. Aviation Manufacturing Technology, 2014,466(22): 158-160.
[8] Kartal F, Gokkaya H. Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel [J]. Materials Science, 2015, 57(9): 773-782.
[9] 谢阳,罗麒元,麻剑,等. 喷油嘴喷孔内流动特性数值仿真与试验分析[J].浙江大学学报:工学版,2016,50(1):111-115.
Xie Yang, Luo Qi-yuan, Ma Jian, et al. Numerical simulation and experimental validation of internal nozzle flow characteristic of injector[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(1): 111-115.
[10] 高航,吴鸣宇,付有志,等. 流体磨料光整加工理论与技术的发展[J].机械工程学报,2015,51(7):174-187.
Gao Hang, Wu Ming-yu, Fu You-zhi, et al. Development of theory and technology in fluid abrasive finishing technology[J]. Journal of Mechanical Engineering, 2015, 51(7): 174-187.
[11] 丁金福,刘润之,张克华,等. 磨粒流精密光整加工的微切削机理[J].光学精密工程,2014,22(12):3324-3331.
Ding Jin-fu, Liu Run-zhi, Zhang Ke-hua, et al. Micro cutting mechanism of abrasive flow precision machining[J]. Optics and Precision Engineering, 2014, 22(12): 3324-3331.
[12] Li Jun-ye, Liu Wei-na, Yang Li-feng, et al. Study of abrasive flow machining parameter optimization based on taguchi method[J]. Journal of Computational and Theoretical Nanoscience, 2013, 10(12): 2949-2954.
[13] 高春甫,刘向阳,王立江,等. 无磨料低温抛光的均匀性仿真[J].吉林大学学报:工学版,2004,34(3):388-391.
Gao Chun-fu, Liu Xiang-yang, Wang Li-jiang, et al. Uniformity simulation of abrasiveless cryogenic pol ishing[J]. Journal of Jilin University (Engineering and Technology Edition), 2004, 34(3): 388-391.
[14] 沈志煌,姚斌,陆如升,等. 精密螺杆转子齿廓成形磨削的误差分析[J].吉林大学学报:工学版,2014,44(6):1591-1595.
Shen Zhi-huang, Yao Bin, Lu Ru-sheng, et al. From grinding error analysis of precision screw rotor profile[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1591-1595.
[15] 李亚林,袁寿其,汤跃,等. 离心泵内示踪粒子运动的离散相模型模拟[J].农业机械学报,2012,43(11):113-118,64.
Li Ya-lin, Yuan Shou-qi,Tang Yue, et al. Simulation of tracer particles movement by discrete phase model in the centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(11): 113-118,64.
[16] 计时鸣,马宝丽,谭大鹏. 结构化表面环境下软磨粒流的流场数值分析[J].光学精密工程,2011,19(9):2092-2099.
Ji Shi-ming, Ma Bao-li, Tan Da-peng. Numerical analysis of soft abrasive flow in structured restraint flow passage[J]. Optics and Precision Engineering, 2016, 24(4): 855-864.
[17] 李俊烨,乔泽民,杨兆军,等. 介观尺度下磨料浓度对磨粒流加工质量影响研究[J]. 吉林大学学报:工学版,2017,47(3): 837-843.
Li Jun-ye, Qiao Ze-min, Yang Zhao-jun, et al. Influence of abrasive concentration on the processing quality of abrasive flow in mesoscopic scale[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(3): 837-843.
[1] LI Jun-ye, QIAO Ze-min, YANG Zhao-jun, ZHANG Xin-ming. Influence of abrasive concentration on processing quality of abrasive flow in mesoscopic scale [J]. 吉林大学学报(工学版), 2017, 47(3): 837-843.
[2] GUO Zhe-feng, TANG Wen-cheng. Stress analysis of cup-shaped parts in secondary deep drawing [J]. 吉林大学学报(工学版), 2016, 46(2): 494-499.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[9] YUAN Chao-chun, ZHANG Long-fei, CHEN Long, HE You-guo, FAN Xing-gen. Braking performance of active collision avoidance system based on road identification[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[10] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .