吉林大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 460-465.doi: 10.13229/j.cnki.jdxbgxb20170105

Previous Articles     Next Articles

Pavement performance of nano materials-basalt fiber compound modified asphalt binder

CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu   

  1. College of Transportation,Jilin University,Changchun 130022,China
  • Received:2017-06-20 Online:2018-03-01 Published:2018-03-01

Abstract: In order to improve both the high temperature stability and low temperature crack resistance of asphalt at the same time, nano materials and basalt fiber were used to modify the asphalt. the high temperature stability and low temperature crack resistance of the composite modified asphalt were evaluated by cone penetration test, softening point test, ductility test, viscosity test, dynamic shear rheological test and low temperature beam bending creep test. Results show that the incorporation of nano materials and basalt fibers can effectively improve the shear strength and cohesive force of asphalt and enhance the high temperature resistance to permanent deformation. The incorporation of nano materials and basalt fibers reduces the low-temperature ductility while increases the low temperature creep rate of asphalt. The low temperature stress relaxation ability of asphalt is also enhanced and low temperature performance is improved. The incorporation of two kinds of modified materials has a superposition effect on the improvement of the asphalt performance, and the application in construction of asphalt pavement is beneficial to further improve its service life.

Key words: road engineering, nano TiO2/CaCO3, basalt fiber, high temperature performance, low temperature performance, compound modified asphalt

CLC Number: 

  • U416.2
[1] 苏群,张奇,王大庆,等. 纳米材料改性沥青的研究状况和进展[J]. 黑龙江工程学院学报:自然科学版,2012,26(2):1-3.
Su Qun, Zhang Qi, Wang Da-qing, et al. Review on nanometer modified asphalt [J]. Journal of Heilongjiang Institute of Technology(Natural Science), 2012, 26(2): 1-3.
[2] 张厚记,胡曙光. 碱性矿物纤维增强沥青混合料的研究[J]. 武汉理工大学学报,2006,28(4):31-34.
Zhang Hou-ji, Hu Shu-guang. Research on alkaline mineral fiber reinforced asphalt mixtures[J]. Journal of Wuhan University of Technology, 2006, 28(4): 31-34.
[3] Shafabakhsh G, Mirabdolazimi S M, Sadeghnejad M. Evaluation the effect of nano-TiO 2 on the rutting and fatigue behavior of asphalt mixtures[J]. Construction and Building Materials, 2014, 54: 566-571.
[4] Shafabakhsh G H, Ani O J. Experimental investigation of effect of Nano TiO 2 /SiO 2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates[J]. Construction and Building Materials, 2015, 98: 692-702.
[5] Karahancer S S, Kiristi M, Terzi S, et al. Performance evaluation of nano-modified asphalt concrete[J]. Construction and Building Materials, 2014, 71: 283-288.
[6] 孙培,张洪亮,郭桂宏,等. 纳米复合改性沥青混合料路用性能研究[J]. 建筑材料学报,2016,19(4):672-677.
Sun Pei, Zhang Hong-liang, Guo Gui-hong, et al. Pavement performance of nano-composite modified asphalt mixture[J]. Journal of Building Materials, 2016, 19(4): 672-677.
[7] 孙璐,辛宪涛,王鸿遥,等. 纳米材料改性沥青路用结合料的性能[J]. 硅酸盐学报,2012,40(8):1095-1101.
Sun Lu, Xin Xian-tao, Wang Hong-yao, et al. Performance of nanomaterial modified asphalt as paving materials[J]. Journal of the Chinese Ceramic Society, 2012, 40(8): 1095-1101.
[8] 孙璐,辛宪涛,王鸿遥,等. 多维数多尺度纳米材料改性沥青的微观机理[J]. 硅酸盐学报,2012,40(10):1437-1447.
Sun Lu, Xin Xian-tao, Wang Hong-yao, et al. Microscopic mechanism of modified asphalt by multi-dimensional and multi-scale nanomaterial[J]. Journal of the Chinese Ceramic Society, 2012, 40(10): 1437-1447.
[9] 俞红光,熊锐,陈建荣,等. 玄武岩纤维沥青胶浆路用性能研究[J]. 公路,2013(10):179-183.
Yu Hong-guang, Xiong Rui, Chen Jian-rong, et al. Investigation on road performance of the basalt fiber modified asphalt binder[J]. Highway, 2013 (10): 179-183.
[10] 宋云祥,韦佑坡,李玉梅,等. 玄武岩纤维沥青胶浆的路用性能[J]. 公路交通科技,2012,29(8):15-19,24.
Song Yun-xiang, Wei You-po, Li Yu-mei, et al. Road performance of basalt fiber reinforced asphalt mastic[J]. Journal of Highway and Transportation Research and Development, 2012, 29(8): 15-19,24.
[11] 郝孟辉,郝培文,杨黔,等. 玄武岩短切纤维改性沥青混合料路用性能分析[J]. 广西大学学报:自然科学版,2011, 36(1): 101-106.
Hao Meng-hui, Hao Pei-wen, Yang Qian, et al. Analysis on pavement performance of the short cut basalt fiber modified asphalt mixture[J]. Journal of Guangxi University(Nat Sci Ed), 2011, 36(1): 101-106.
[12] Fan Wen-xiao, Kang Hai-gui, Zheng Yuan-xun. Experimental study of pavement performance of basalt fiber modified asphalt mixture[J]. Journal of Southeast University (English Edition), 2010, 26(4): 614-617.
[13] 程永春,马慧莉,张鹏,等. 不同填料沥青胶浆物理力学性能试验[J]. 吉林大学学报:工学版,2014, 44(6): 1628-1632.
Cheng Yong-chun, Ma Hui-li, Zhang Peng,et al. Experimental study of physical and mechanical properties of asphalt mortars with different fillers[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(6): 1628-1632.
[1] LI Yi,LIU Li-ping,SUN Li-jun. Prediction model on rutting equivalent temperature for asphalt pavement at different depth [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1703-1711.
[2] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[3] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[4] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[5] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[6] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[7] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[8] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[9] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[10] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[11] YU Tian-lai, ZHENG Bin-shuang, LI Hai-sheng, TANG Ze-rui, ZHAO Yun-peng. Analyses of defects and causes of steel-plastic compound reinforced retaining wall [J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[12] CAI Yang, FU Wei, TAO Ze-feng, CHEN Kang-wei. Influence analysis of geotextile on reducing traffic induced reflective cracking using extended finite element model [J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[13] LIU Han-bing, ZHANG Hu-zhu, WANG Jing. Effect of dehydration on shear strength properties of compacted clayey soil [J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
[14] CUI Ya-nan, HAN Ji-wei, FENG Lei, LI Jia-di, WANG Le. Microstructure of asphalt under salt freezing cycles [J]. 吉林大学学报(工学版), 2017, 47(2): 452-458.
[15] WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, CHEN Zhong-da. Dynamic shear modulus prediction of asphalt mastic based on micromechanics [J]. 吉林大学学报(工学版), 2017, 47(2): 459-467.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Wen-quan, SHANG Yan-geng, LI Xiu-juan, WANG Chun-sheng, ZHANG Gui-lan. Microstructure and property of laser welded 650 MPa transformation induced plasticity steel sheet[J]. , 2012, 42(05): 1203 -1207 .
[2] HUANG Jian-kang, HE Cui-cui, SHI Yu, FAN Ding. Thermodynamic analysis of Al-Fe intermetallic compounds formed by dissimilar joining of aluminum and galvanized steel[J]. 吉林大学学报(工学版), 2014, 44(4): 1037 -1041 .
[3] XU Tao, LIU Guang-jie, GE Hai-chao, ZHANG Wei, YU Zheng-lei. Modeling heat source of dynamic welding with local coordinate curve path[J]. 吉林大学学报(工学版), 2014, 44(6): 1704 -1709 .
[4] LUO Hai-tao, ZHOU Wei-jia, WANG Hong-guang, WU Jia-feng. Mechanical analysis of friction stir welding robot under typical working conditions[J]. 吉林大学学报(工学版), 2015, 45(3): 884 -891 .
[5] YANG Yue, ZHOU Lei-lei. Effect of micro-arc oxidation treatment on corrosion resistance of aluminum friction stir welding welds[J]. 吉林大学学报(工学版), 2016, 46(2): 511 -515 .
[6] CHU Liang, SUN Cheng-wei, GUO Jian-hua, ZHAO Di, LI Wen-hui. Evaluation method of braking energy recovery based on wheel cylinder pressure[J]. 吉林大学学报(工学版), 2018, 48(2): 349 -354 .
[7] HE Xiang-kun, JI Xue-wu, YANG Kai-ming, WU Jian, LIU Ya-hui. Tire slip control based on integrated-electro-hydraulic braking system[J]. 吉林大学学报(工学版), 2018, 48(2): 364 -372 .
[8] ZHANG Tian-shi, SONG Dong-jian, GAO Qing, WANG Guo-hua, YAN Zhen-min, SONG Wei. Construction of power battery liquid cooling system for electric vehicle and simulation of its working process[J]. 吉林大学学报(工学版), 2018, 48(2): 387 -397 .
[9] YUAN Chao-chun, ZHANG Long-fei, CHEN Long, HE You-guo, FAN Xing-gen. Braking performance of active collision avoidance system based on road identification[J]. 吉林大学学报(工学版), 2018, 48(2): 407 -414 .
[10] XU Hong-feng, GAO Shuang-shuang, ZHENG Qi-ming, ZHANG Kun. Hybrid dynamic lane operation at signalized intersection[J]. 吉林大学学报(工学版), 2018, 48(2): 430 -439 .