Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (6): 1703-1711.doi: 10.13229/j.cnki.jdxbgxb20170520

Previous Articles     Next Articles

Prediction model on rutting equivalent temperature for asphalt pavement at different depth

LI Yi(),LIU Li-ping,SUN Li-jun()   

  1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University,Shanghai 201804,China
  • Received:2017-05-22 Online:2018-11-20 Published:2018-12-11

Abstract:

Rutting is closely related to the pavement temperature field. As a result, using the concept of rutting equivalent temperature to predict rutting distress is a common method. Different from previous studies, this study puts forward a calculation method of the rutting equivalent temperature for asphalt pavement at different depth, which is based upon the pre-established prediction models of asphalt temperature field and rutting distress. Meanwhile, the rutting equivalent temperature prediction model considering regional differences and asphalt material properties is initially established and tested. Compared with the existing rutting equivalent temperature prediction model, the proposed model reflects the influences of different depth, different regions and different types of asphalt materials. It is demonstrated that this model has better applicability.

Key words: road engineering, asphalt pavement, rutting prediction, equivalent temperature, prediction model

CLC Number: 

  • U416

Table 1

Hourly average air temperature and solar radiation in Shanghai on 20th August"

时 间 气温/℃ 辐射/(kW·m-2)
0:00~1:00 26.9 0.0000
1:00~2:00 26.4 0.0000
2:00~3:00 26.2 0.0000
3:00~4:00 26.6 0.0000
4:00~5:00 26.9 0.0094
5:00~6:00 28.0 0.1657
6:00~7:00 29.1 0.2599
7:00~8:00 29.6 0.3214
8:00~9:00 29.6 0.2172
9:00~10:00 28.8 0.0659
10:00~11:00 28.2 0.1478
11:00~12:00 27.9 0.1647
12:00~13:00 27.5 0.2123
13:00~14:00 27.7 0.2837
14:00~15:00 27.2 0.0461
15:00~16:00 26.8 0.0233
16:00~17:00 27.3 0.0511
17:00~18:00 27.5 0.0035
18:00~19:00 27.4 0.0000
19:00~20:00 27.4 0.0000
20:00~21:00 26.8 0.0000
21:00~22:00 26.8 0.0000
22:00~23:00 27.1 0.0000
23:00~24:00 27.3 0.0000

Table 2

Hourly pavement temperature at 0.5 cm and 1.5 cm depth in Shanghai on 20th August ℃"

时 间 0.5 cm 1.5 cm
0:00~1:00 35.84 35.20
1:00~2:00 35.62 34.99
2:00~3:00 35.41 34.78
3:00~4:00 35.21 34.58
4:00~5:00 35.10 34.46
5:00~6:00 35.00 34.23
6:00~7:00 35.19 34.34
7:00~8:00 35.80 34.90
8:00~9:00 36.83 36.01
9:00~10:00 37.80 37.10
10:00~11:00 38.22 37.46
11:00~12:00 38.21 37.44
12:00~13:00 37.80 37.00
13:00~14:00 37.21 36.35
14:00~15:00 37.07 36.40
15:00~16:00 36.77 36.11
16:00~17:00 36.31 35.63
17:00~18:00 36.07 35.42
18:00~19:00 35.86 35.21
19:00~20:00 35.65 35.01
20:00~21:00 35.68 35.04
21:00~22:00 35.68 35.04
22:00~23:00 35.59 34.94
23:00~24:00 35.51 34.87

Table 3

Hourly modulus of the first sublayer in Shanghai on 20th August MPa"

时 间 情况A 情况B 情况C
0:00~1:00 2682.05 3115.90 3115.90
1:00~2:00 2723.72 3159.06 3159.06
2:00~3:00 2766.26 3203.05 3203.05
3:00~4.00 2806.28 3244.34 3244.34
4:00~5:00 2829.15 3267.90 3267.90
5:00~6:00 2849.56 3288.92 3288.92
6:00~7:00 2811.09 3249.30 3249.30
7:00~8:00 2688.40 3122.48 3122.48
8:00~9:00 2495.37 2921.48 2921.48
9:00~10:00 2326.30 2743.80 2743.80
10:00~11:00 2256.78 2670.28 2670.28
11:00~12:00 2257.76 2671.32 2671.32
12:00~13:00 2326.14 2743.64 2743.64
13:00~14:00 2427.44 2850.28 2850.28
14:00~15:00 2451.38 2875.39 2875.39
15:00~16:00 2506.64 2933.27 2933.27
16:00~17:00 2591.35 3021.66 3021.66
17:00~18:00 2637.23 3069.38 3069.38
18:00~19:00 2677.96 3111.67 3111.67
19:00~20:00 2717.86 3153.00 3153.00
20:00~21:00 2712.24 3147.18 3147.18
21:00~22:00 2712.84 3147.81 3147.81
22:00~23:00 2731.27 3166.88 3166.88
23:00~24:00 2745.61 3181.70 3181.70

Table 4

Hourly maximum shear stress at 1.5 cm depth in Shanghai on 20th AugustMPa"

时 间 情况A 情况B 情况C
0:00~1:00 0.08789 0.08755 0.08705
1:00~2:00 0.087 75 0.087 41 0.086 91
2:00~3:00 0.087 60 0.087 26 0.086 76
3:00~4:00 0.087 43 0.087 10 0.086 6
4:00~5:00 0.087 28 0.086 95 0.086 46
5:00~6:00 0.086 33 0.086 01 0.085 54
6:00~7:00 0.085 91 0.085 60 0.085 13
7:00~8:00 0.086 04 0.085 73 0.085 26
8:00~9:00 0.087 42 0.087 09 0.086 60
9:00~10:00 0.088 91 0.088 57 0.088 06
10:00~11:00 0.088 85 0.088 51 0.088 00
11:00~12:00 0.088 77 0.088 44 0.087 93
12:00~13:00 0.088 26 0.087 93 0.087 43
13:00~14:00 0.087 45 0.087 13 0.086 63
14:00~15:00 0.088 56 0.088 22 0.087 71
15:00~16:00 0.088 46 0.088 12 0.087 61
16:00~17:00 0.087 97 0.087 63 0.087 13
17:00~18:00 0.088 01 0.087 68 0.087 17
18:00~19:00 0.087 88 0.087 54 0.087 04
19:00~20:00 0.087 73 0.087 39 0.086 89
20:00~21:00 0.087 77 0.087 44 0.086 94
21:00~22:00 0.087 77 0.087 44 0.086 94
22:00~23:00 0.087 69 0.087 35 0.086 85
23:00~24:00 0.087 63 0.087 29 0.086 79

Fig.1

Calculation process of accumulated rutting distress"

Table 5

Calculation values of rutting equivalent temperature at different depth"

亚层
/mm
上海等效温度/℃ 沈阳等效温度/℃
情况A 情况B 情况C 情况A 情况B 情况C
1 40.55 43.40 43.37 39.43 42.01 41.97
2 36.80 39.50 39.45 35.87 38.38 38.34
3 35.35 37.92 37.87 34.44 36.85 36.80
4 34.55 37.03 36.99 33.61 35.95 35.91
5 34.07 34.03 36.46 33.10 33.07 35.35
6 33.80 33.77 36.16 32.79 32.76 35.01
7 33.68 33.65 36.02 32.62 32.59 34.81
8 33.66 33.63 36.00 32.55 32.52 34.72
9 33.73 33.70 36.06 32.55 32.53 34.71
10 33.84 33.83 36.19 32.60 32.58 34.75
11 33.99 33.98 33.95 32.67 32.65 32.63
12 34.16 34.14 34.13 32.75 32.74 32.72
13 34.31 34.30 34.29 32.82 32.81 32.80
14 34.43 34.42 34.42 32.85 32.85 32.84
15 34.50 34.49 34.49 32.83 32.83 32.83
16 34.48 34.49 34.49 32.73 32.73 32.73
17 34.38 34.39 34.39 32.53 32.53 32.84
18 34.17 34.17 34.18 32.21 32.21 32.22

Fig.2

Calculated values and basic prediction model values of rutting equivalent temperature in Shanghai and Shenyang under case A"

Fig.3

Improved model considering regional difference"

Fig.4

Mean annual air temperature and mean annual earth temperature of 36 regions"

Fig.5

Calculated values of different conditions in Shanghai and Shenyang"

Fig.6

Relationship between rutting equivalent temperatures of base asphalt and modified asphalt"

Fig.7

Comparison between calculated values and predicted values"

Fig.8

Comparison between calculated rutting distress and predicted rutting distress"

Fig.9

Calculated rutting distress and predicted rutting distress of different pavement structures"

Fig.10

Comparison of prediction results between different modes"

[1] 苏凯, 孙立军 . 车辙等效温度确定方法探讨[J]. 大连理工大学学报, 2006,46(增刊1):162-167.
doi: 10.3321/j.issn:1000-8608.2006.z1.027
Su Kai, Sun Li-jun . Discussion of methods for determining effective temperature of rutting[J]. Journal of Dalian University of Technology, 2006,46(Sup.1):162-167.
doi: 10.3321/j.issn:1000-8608.2006.z1.027
[2] 栗培龙, 张争奇, 王秉纲 . 考虑有效温度及荷载的沥青混凝土路面车辙等效温度研究[J]. 公路, 2011(2):6-11.
Li Pei-long, Zhang Zheng-qi, Wang Bing-gang . Research on rutting equivalent temperature of asphalt concrete pavement considering effective temperature and load[J]. Highway, 2011(2):6-11.
[3] 吁新华, 谈至明, 胡洪龙 , 等. 沥青面层的车辙等效温度[J]. 同济大学学报:自然科学版, 2014,42(5):701-706,729.
Yu Xin-hua, Tan Zhi-ming, Hu Hong-long , et al. Rutting equivalent temperature for asphalt pavement[J]. Journal of Tongji University(Natural Science), 2014,42(5):701-706,729.
[4] 孙立军 . 沥青路面结构行为学[M]. 2版. 上海: 同济大学出版社, 2013.
[5] 孙立军, 秦健 . 沥青路面温度场的预估模型[J]. 同济大学学报:自然科学版, 2006,34(4):480-483.
doi: 10.3321/j.issn:0253-374X.2006.04.011
Sun Li-jun, Qin Jian . Prediction model on temperature field in asphalt pavement[J]. Journal of Tongji University(Natural Science), 2006,34(4):480-483.
doi: 10.3321/j.issn:0253-374X.2006.04.011
[6] Witczak M W . Effective temperature analysis for permanent deformation of asphaltic mixtures[R]. Washington DC: National Research Council, 1992.
[7] Cominsky R J, Huber G A, Kennedy T W , et al. The Superpave mix design manual for new construction and overlays[R]. Washington DC: National Research Council, 1994.
[8] Sotil A . Use of the dynamic modulus E * test as permanent deformation performance criteria for asphalt pavement systems [D]. Tempe: Arizona State University, 2005.
[9] Monismith C L, Hicks R G, Finn F N , et al. Permanent deformation response of asphalt-aggregate mixes[R]. Washington DC:National Research Council, 1994.
[10] EI-Basyouny M, Jeong M G . Effective temperature for analysis of permanent deformation and fatigue distress on asphalt mixtures[J]. Journal of the Transportation Research Board, 2009(2127):155-163.
doi: 10.3141/2127-18
[11] Moulthrop J, Witczak M W . A performance-related specification for hot-mix asphalt[R]. Washington DC: Transportation Research Board of the National Academies, 2011.
[12] Mohseni A, Azari H. Effective temperature for permanent deformation testing of asphalt mixtures [C]//International Society of Asphalt Pavements, Raleigh, North Carolina, 2014: 1501-1511.
[13] Witczak M W, Andrei D, Houston W N . Guide for mechanistic-empirical design of new and rehabilitated pavement structures[R]. Washington DC: Transportation Research Board of the National Academies, 2004.
[14] 秦健, 孙立军 . 沥青路面温度场的分布规律[J]. 公路交通科技, 2006,23(8):18-21.
doi: 10.3969/j.issn.1002-0268.2006.08.005
Qin Jian, Sun Li-jun . Study on asphalt pavement temperature field distribution pattern[J]. Journal on Highway and Transportation Research and Development, 2006,23(8):18-21.
doi: 10.3969/j.issn.1002-0268.2006.08.005
[15] Barber E S. Calculation of maximum pavement temperatures from weather reports [C]//Highway Research Board, Washington DC, 1957: 1-8.
[1] Xiao⁃ming HUANG,Qing⁃qing CAO,Xiu⁃yu LIU,Jia⁃ying CHEN,Xing⁃lin ZHOU. Simulation of vehicle braking performance on rainy daysbased on pavement surface fractal friction theory [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 757-765.
[2] Jing WANG,Xiang LYU,Xiao⁃long QU,Chun⁃ling ZHONG,Yun⁃long ZHANG. Analysis of relationship between subgrade soil shear strength and chemical and minerals component [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 766-772.
[3] ZANG Guo-shuai, SUN Li-jun. Method based on inertial point for setting depth to rigid layer [J]. 吉林大学学报(工学版), 2018, 48(4): 1037-1044.
[4] NIAN Teng-fei, LI Ping, LIN Mei. Micro-morphology and gray entropy analysis of asphalt characteristics functional groups and rheological parameters under freeze-thaw cycles [J]. 吉林大学学报(工学版), 2018, 48(4): 1045-1054.
[5] GONG Ya-feng, SHEN Yang-fan, TAN Guo-jin, HAN Chun-peng, HE Yu-long. Unconfined compressive strength of fiber soil with different porosity [J]. 吉林大学学报(工学版), 2018, 48(3): 712-719.
[6] CHENG Yong-chun, BI Hai-peng, MA Gui-rong, GONG Ya-feng, TIAN Zhen-hong, LYU Ze-hua, XU Zhi-shu. Pavement performance of nano materials-basalt fiber compound modified asphalt binder [J]. 吉林大学学报(工学版), 2018, 48(2): 460-465.
[7] ZHANG Yang-peng, WEI Hai-bin, JIA Jiang-kun, CHEN Zhao. Numerical evaluation on application of roadbed with composite cold resistance layer inseasonal frozen area [J]. 吉林大学学报(工学版), 2018, 48(1): 121-126.
[8] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[9] MA Ye, NI Ying-sheng, XU Dong, DIAO Bo. External prestressed strengthening based on analysis of spatial grid model [J]. 吉林大学学报(工学版), 2018, 48(1): 137-147.
[10] LUO Rong, ZENG Zhe, ZHANG De-run, FENG Guang-le, DONG Hua-jun. Moisture stability evaluation of asphalt mixture based on film pressure model of Wilhelmy plate method [J]. 吉林大学学报(工学版), 2017, 47(6): 1753-1759.
[11] NI Ying-sheng, MA Ye, XU Dong, LI Jin-kai. Space mesh analysis method for shear lag effect of cable-stayed bridge with corrugated steel webs [J]. 吉林大学学报(工学版), 2017, 47(5): 1453-1464.
[12] ZHENG Chuan-feng, MA Zhuang, GUO Xue-dong, ZHANG Ting, LYU Dan, Qin Yong. Coupling effect of the macro and micro characteristics of mineral powder on the low-temperature performance of asphalt mortar [J]. 吉林大学学报(工学版), 2017, 47(5): 1465-1471.
[13] YU Tian-lai, ZHENG Bin-shuang, LI Hai-sheng, TANG Ze-rui, ZHAO Yun-peng. Analyses of defects and causes of steel-plastic compound reinforced retaining wall [J]. 吉林大学学报(工学版), 2017, 47(4): 1082-1093.
[14] CAI Yang, FU Wei, TAO Ze-feng, CHEN Kang-wei. Influence analysis of geotextile on reducing traffic induced reflective cracking using extended finite element model [J]. 吉林大学学报(工学版), 2017, 47(3): 765-770.
[15] LIU Han-bing, ZHANG Hu-zhu, WANG Jing. Effect of dehydration on shear strength properties of compacted clayey soil [J]. 吉林大学学报(工学版), 2017, 47(2): 446-451.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Bao Tie,Liu Shu-fen . Network fault management formal description based on Communication Sequential Processes (CSP)[J]. 吉林大学学报(工学版), 2007, 37(01): 117 -120 .
[2] Du Li-jie,Zhao Xiao-hui,Luo Si-wei . Improved synchronization iterative algorithm based on cyclic prefix in OFDM system[J]. 吉林大学学报(工学版), 2007, 37(01): 177 -181 .
[3] Dong Li-yan, Yuan Sen-miao,Liu Guang-yuan, Li Yong-li,Guan Wei-zhou . Constrained classifier learning algorithm based on genetic algorithm[J]. 吉林大学学报(工学版), 2007, 37(03): 595 -0599 .
[4] Cheng Ping,Zhang Hai-tao,Gao Yan,Li Jun-feng,Wang Hong-yan . Application of ANN in property prediction of polyacrylate emulsion
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[5] Fan Yong-kai,Lin Jun,Sun Tian-ze,Sui Yang-yi . Requirementdriven virtual instrument software automatic generation framework[J]. 吉林大学学报(工学版), 2007, 37(03): 606 -0610 .
[6] Duan Fu-qing,Zhou Ming-quan,Zhang Jia-cai . Non-linear scale space filtering based on mean shift[J]. 吉林大学学报(工学版), 2007, 37(03): 634 -0639 .
[7] Zhang Da-qing;He Qing-hua;Hao Peng;Chen Qian-gen . Robust trajectory tracking control of hydraulic excavator bucket[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[8] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1284 -1287 .
[9] Yang Qing-fang, Chen Lin . Division approach of traffic control work zone[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 139 -142 .
[10] Liang Ji-cai, Li Yi, Li Zhong-ran, Zhang Wei, Liu Cheng-de . Numerical simulation of filling process in resin transfer molding for automobile bumper[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 15 -19 .