Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (3): 920-933.doi: 10.13229/j.cnki.jdxbgxb20180193

Previous Articles     Next Articles

TPR⁃TF: time⁃aware point of interest recommendation model based on tensor factorization

Nan WANG1,2(),Jin⁃bao LI1,2(),Yong LIU1,2,Yu⁃jie ZHANG1,2,Ying⁃li ZHONG1,2   

  1. 1. School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
    2. Key Laboratory of Database and Parallel Computing, Heilongjiang University, Harbin 150080, China
  • Received:2018-03-05 Online:2019-05-01 Published:2019-07-12
  • Contact: Jin?bao LI E-mail:wangnn125@126.com;jbli@hlju.edu.cn

Abstract:

With the rapid growth of the location?based social networks, Point of Interest (POI) recommen?dation has become an important research topic in the field of data mining. Existing approaches for POI recommendation task do not reasonably utilize the time sensitivity of POI recommendations and have not taken full account of the user's behavior preferences at different time periods, causing the POI recommendation performance is poor. Firstly, this paper studies the POI recommendation problem of time sensitivity and proposes a time dynamic partition algorithm based on hierarchical clustering. Through partition the fine grain of time, the result of the experiment is more reasonable and effective than the previous experiments which partition time is evenly given by experience. Secondly, by combining the time?aware recommendation with the influence of the user's direct friendship and potential friendship, the paper expands the scope of user's social influence, and then further improves the POI recommendation performance. Lastly, using the method of randomly selecting POIs by the frequency distribution of check?ins, it improves the classic BPR method. Experimental results on the two datasets indicate that the TPR?TF model is superior to the current mainstream POI recommendation models, in terms of precision and recall.

Key words: computer application, point of interest(POI) recommendation, tensor factorization, time?aware, social relationship

CLC Number: 

  • TP391

Table1

Notations"

符号 描 述
UTL 分别表示用户集合、时间戳集合、POI位置集合。
D D = { d i = ( u , t , l ) ( u , t , l ) U × T × L } D 为全体签到记录集合,其中 d i 为用户?时间?位置三维张量上的第 i 条签到记录, ( u , t , l ) 为用户 u 在时间 t 在位置 l 的一条签到记录。
U u L l T t U u L l T t R k 分别为用户 u 的特征向量、POI位置 l 的特征向量、时间戳 t 所在时间分段的特征向量, k 为特征向量的维度。
f ( u , t , l ) 用户 u 在时间 t 访问位置 l 的可能的打分函数。
w i , j s , w i , j c , w i , j w i , j s 为用户 i 和其朋友基于共同朋友的相似性; w i , j c 为用户 i 和其朋友 j 基于共同签到的相似性; w i , j 为用户 i 和其朋友 j 基于共同朋友和共同签到的相似性。
A ( i ) 表示用户 i 访问过的所有POI位置的集合。
l i > u , t l j 对于 ? l i , l j L ,用户 u 在时间t优先选择 l i 而非 l j 的一种顺序关系。
L soc?friL soc?undirect?fri 分别为直接朋友关系的社交影响正则化项、潜在朋友关系的社交影响正则化项。
θγμλ 分别为参数集合、步长、朋友正则化项系数以及与 U u L l T t 有关的正则化项系数。

Table2

Statistics of Gowalla and Brightkite"

类 别 Gowalla Brightkite
用户数 26 287 24 227
POI数 11 640 43 592
签到记录数 1 104 464 3 260 809

Fig.1

Effect of different parameter settings inTPR?TF model"

Table 3

Statistical results of different time partition methods in Gowalla(ns=4)"

序号 常规时间分段 时间动态分段
T1 00:00~06:00 00:08:55~06:57:60
T2 06:00~12:00 06:57:60~13:24:03
T3 12:00~18:00 13:24:03~19:00:01
T4 18:00~00:00 19:00:01~00:08:55

Table 4

Statistical results of different time partition"

序号 常规时间分段 时间动态分段
T1?工作日 00:00~06:00 00:04:40~05:36:15
T2?工作日 06:00~12:00 05:36:15~10:41:59
T3?工作日 12:00~18:00 10:41:59~16:16:48
T4?工作日 18:00~00:00 16:16:48~00:04:40
T5?非工作日 00:00~06:00 04:02:08~07:48:44
T6?非工作日 06:00~12:00 07:48:44~12:43:10
T7?非工作日 12:00~18:00 12:43:10~16:13:57
T8?非工作日 18:00~00:00 16:13:57~04:02:08

Fig.2

Performance comparison on different time partition (ns=8)"

Fig.3

Performance comparison of different social relationships"

Fig.4

Performance comparison of TPR?TF andTPR?TF_BPR"

Fig.5

Performance comparison of TPR?TF andother models"

1 Ye M , Yin P F , Lee W , et al . Exploiting geographical influence for collaborative point⁃of⁃interest recommendation[C]∥Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 2011: 325⁃334.
2 Yuan Q , Cong G , Ma Z Y , et al . Time⁃aware point⁃of⁃interest recommendation[C]∥Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 2013: 363⁃372.
3 Bao J , Zheng Y , Mokbel M , et al . Location⁃based and preference⁃aware recommendation using sparse geo⁃social networking data[C]∥Proceedings of the 20th International Conference on Advances in Geographic Information Systems, Redondo Beach, USA, 2012: 199⁃208.
4 Lian D , Zhao C , Xie X , et al . GeoMF: joint geographical modeling and matrix factorization for point⁃of⁃interest recommendation[C]∥Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 2014: 831⁃840.
5 Liu S D , Meng X W . Recommender systems in location⁃based social networks[J]. Chinese Journal of Computers, 2015, 38(2): 322⁃336.
6 Goodfellow I , Bengio Y , Courville A , et al . Deep Learning[M]. Cambridge: MIT press, 2016.
7 Yao Z , Fu Y , Liu B , et al . POI recommendation: a temporal matching between POI popularity and user regularity[C]∥Proceedings of International Conference on Data Mining, Barcelona, Spain, 2017: 549⁃558.
8 Cho E , Myers S A , Leskovec J . Friendship and mobility: user movement in location⁃based social networks[C]∥Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, USA, 2011: 1082⁃1090.
9 Gao H , Tang J , Hu X , et al . Exploring temporal effects for location recommendation on location⁃based social networks[C]∥Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, 2013: 93⁃100.
10 Yuan Q , Cong G , Sun A . Graph⁃based point⁃of⁃interest recommendation with geographical and temporal influences[C]∥Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, Shanghai, China, 2014: 659⁃668.
11 Hosseini S , Li L T . Point⁃of⁃interest recommendation using temporal orientations of users and locations[C]∥Proceedings of the 21st International Conference on Database Systems for Advanced Applications, Dallas, USA, 2016: 330⁃347.
12 Ma H , Zhou D , Liu C , et al . Recommender systems with social regularization[C]∥Proceedings of the Forth International Conference on Web Search and Web Data Mining, Kowloon, Hong Kong, 2011: 287⁃296.
13 Zhang J , Chow C . GeoSoCa: exploiting geographical, social and categorical correlations for point⁃of⁃interest recommendations[C]∥Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 2015: 443⁃452.
14 Jamali M , Ester M . A matrix factorization technique with trust propagation for recommendation in social networks[C]∥Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 2010:135⁃142.
15 Ma H , Zhou T C , Lyu M R , et al . Improving recommender systems by incorporating social contextual information[J]. ACM Transactions on Information Systems, 2011, 29(2):1⁃23.
16 Cheng C , Yang H , King I , et al . Fused matrix factorization with geographical and social influence in location⁃based social networks[C]∥Proceedings of the National Conference on Artificial Intelligence, Toronto, Canada, 2012: 17⁃23.
17 Rendle S , Freudenthaler C , Gantner Z , et al . BPR: Bayesian personalized ranking from implicit feedback[C]∥Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Canada, 2009: 452⁃461.
18 Zhao S L , King I , Lyu M R . A survey of point⁃of⁃interest recommendation in location⁃based social networks[J/OL].[2018⁃02⁃26].https:∥⁃of⁃interest_Recommendation_in_Location⁃based_Social_Networks/links/5787365a08ae36ad40a6a4e8 /A⁃Survey⁃of⁃Point⁃of⁃interest⁃Recommendation⁃in⁃Location⁃based⁃Social⁃Networks.pdf?origin=publication_detail.
19 Ye M , Yin P , Lee W C . Location recommendation for location⁃based social networks[C]∥Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, USA, 2010: 458⁃461.
20 Zhang W , Wang J . Location and time aware social collaborative retrieval for new successive point⁃of⁃interest recommendation[C]∥Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Australia, 2015(19⁃23): 1221⁃1230.
21 Ye M , Liu X , Lee W C . Exploring social influence for recommendation: a generative model approach[C]∥Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, USA, 2012: 671⁃680.
22 Li H , Ge Y , Zhu H , et al . Point⁃of⁃interest recommendations: learning potential check⁃ins from friends[C]∥Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016(13⁃17): 975⁃984.
23 Zhang J , Chow C , Li Y , et al . LORE: exploiting sequential influence for location recommendations[C]∥Proceedings of the 22nd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Dallas, Fort Worth, USA, 2014(4⁃7): 103⁃112.
24 Yao L , Sheng Q Z , Qin Y , et al . Context⁃aware point⁃of⁃interest recommendation using tensor factorization with social regularization[C]∥Proceedings of the 38th International ACM SIGIR conference on Research and Development in Information Retrieval, Santiago, Chile, 2015: 1007⁃1010.
25 Li X , Cong G , Li X L , et al . Rank⁃GeoFM: a ranking based geographical factorization method for point of interest recommendation[C]∥Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 2015: 433⁃442.
[1] LIU Fu,ZONG Yu-xuan,KANG Bing,ZHANG Yi-meng,LIN Cai-xia,ZHAO Hong-wei. Dorsal hand vein recognition system based on optimized texture features [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1844-1850.
[2] WANG Li-min,LIU Yang,SUN Ming-hui,LI Mei-hui. Ensemble of unrestricted K-dependence Bayesian classifiers based on Markov blanket [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1851-1858.
[3] JIN Shun-fu,WANG Bao-shuai,HAO Shan-shan,JIA Xiao-guang,HUO Zhan-qiang. Synchronous sleeping based energy saving strategy of reservation virtual machines in cloud data centers and its performance research [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1859-1866.
[4] ZHAO Dong,SUN Ming-yu,ZHU Jin-long,YU Fan-hua,LIU Guang-jie,CHEN Hui-ling. Improved moth-flame optimization method based on combination of particle swarm optimization and simplex method [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1867-1872.
[5] LIU En-ze,WU Wen-fu. Agricultural surface multiple feature decision fusion disease judgment algorithm based on machine vision [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1873-1878.
[6] OUYANG Dan-tong, FAN Qi. Clause-level context-aware open information extraction [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1563-1570.
[7] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593-1599.
[8] GUI Chun, HUANG Wang-xing. Network clustering method based on improved label propagation algorithm [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1600-1605.
[9] LIU Yuan-ning, LIU Shuai, ZHU Xiao-dong, CHEN Yi-hao, ZHENG Shao-ge, SHEN Chun-zhuang. LOG operator and adaptive optimization Gabor filtering for iris recognition [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1606-1613.
[10] CHE Xiang-jiu, WANG Li, GUO Xiao-xin. Improved boundary detection based on multi-scale cues fusion [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1621-1628.
[11] ZHAO Hong-wei, LIU Yu-qi, DONG Li-yan, WANG Yu, LIU Pei. Dynamic route optimization algorithm based on hybrid in ITS [J]. 吉林大学学报(工学版), 2018, 48(4): 1214-1223.
[12] HUANG Hui, FENG Xi-an, WEI Yan, XU Chi, CHEN Hui-ling. An intelligent system based on enhanced kernel extreme learning machine for choosing the second major [J]. 吉林大学学报(工学版), 2018, 48(4): 1224-1230.
[13] FU Wen-bo, ZHANG Jie, CHEN Yong-le. Network topology discovery algorithm against routing spoofing attack in Internet of things [J]. 吉林大学学报(工学版), 2018, 48(4): 1231-1236.
[14] CAO Jie, SU Zhe, LI Xiao-xu. Image annotation method based on Corr-LDA model [J]. 吉林大学学报(工学版), 2018, 48(4): 1237-1243.
[15] HOU Yong-hong, WANG Li-wei, XING Jia-ming. HTTP-based dynamic adaptive streaming video transmission algorithm [J]. 吉林大学学报(工学版), 2018, 48(4): 1244-1253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] SUN Jing-yang, CHENG Guang-ming, WU Bo-da, WEN Jian-ming,ZENG Ping. Circular bimorph piezoelectric bone-conduction hearing device[J]. 吉林大学学报(工学版), 2010, 40(01): 103 -0107 .
[2] KUI Hai-lin, LAI Xiang-xiang, HUANG Chao-sheng, SHI Shu-ming, WANG Hai-zhou. EV calculation model of energy consumption based on velocity and acceleration distribution[J]. 吉林大学学报(工学版), 2014, 44(6): 1591 -1595 .
[3] JIAO Yu-ling, ZHANG Peng, TIAN Guang-dong, XING Xiao-cui, ZOU Lian-hui. Slotting optimization of automated warehouse based on multi-population GA[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1398 -1404 .
[4] LI Yu-qing,XU Min-qiang,WANG Ri-xin. Scheduling for observations of deep space spacecraft under uncertainty[J]. 吉林大学学报(工学版), 2009, 39(06): 1590 -1594 .
[5] DING Ning, CHANG Yu-chun, ZHAO Jian-bo, WANG Chao, YANG Xiao-tian. High-speed CMOS image sensor data acquisition system based on USB 3.0[J]. 吉林大学学报(工学版), 2018, 48(4): 1298 -1304 .
[6] WU Bin, LI Jun, ZHANG Jun-yan, ZHANG Bin. Fabrication and properties of tappet with diamond-like carbon film[J]. 吉林大学学报(工学版), 2013, 43(01): 51 -55 .
[7] QIU Yan-kai, LI Bao-ren, YANG Gang, CAO Bo, LIU Zhen. Characteristics and mechanism reducing pressure ripple of hydraulic system with novel hydraulic muffler[J]. 吉林大学学报(工学版), 2018, 48(4): 1085 -1091 .
[8] ZHANG Ying-zhi, ZHENG Shan, SHEN Gui-xiang, ZHENG Rui, GU Dong-wei, NIU Xu-lei. Criticality analysis for CNC turret adopting importance and fuzzy reasoning[J]. , 2012, 42(05): 1157 -1162 .
[9] CHEN Yong-heng, LIU Xin-shan, XIONG Shuai, WANG Kun-wei, SHEN Yao, YANG Shao-hui. Variable speed limit control under snow and ice conditions for urban expressway in junction bottleneck area[J]. 吉林大学学报(工学版), 2018, 48(3): 677 -687 .
[10] JIN Jing-fu, CONG Qian, YANG Xiao-dong. Freezing Adhesive Characteristics of Engineering Materials and[J]. 吉林大学学报(工学版), 2005, 35(05): 486 -0489 .