Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (6): 1747-1754.doi: 10.13229/j.cnki.jdxbgxb20170854

Previous Articles     Next Articles

Effect of control parameters on heat release rate with ANN method

JIANG Tao(),LIN Xue-dong,LI De-gang(),YANG Miao,TANG Xue-lin   

  1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China
  • Received:2017-08-14 Online:2018-11-20 Published:2018-12-11

Abstract:

A combustion simulation model is built with AVL-Fire, and the dynamic distribution characteristics of the mixture concentration field and temperature field are analyzed by verification of the simulation results on test bench. The start point of combustion, premixed rate, diffusion rate and combustion duration are taken as the evaluation parameters. The effect of the control parameters on Heat Release Rate (HRR) at different stage is analyzed. An Artificial Neural Network (ANN) model is established for quantitative prediction of the evaluation parameters. The structure and of the ANN algorithm is confirmed. The effects of the injection parameters and intake parameters on the evaluation parameters are analyzed and predicted. The results show that, when the structure 5-18-4 ANN with trainlm algorithm are adopted, the robustness, responsiveness and convergence precision are good, indicating the ANN model is a powerful tool to predict HRR.

Key words: power machinery and engineering, artificial neural network(ANN), control parameter, heat release rate (HRR), quantitative evaluation parameter, quantitative prediction

CLC Number: 

  • TK421

Table 1

Selected range of experiment conditions"

参数 变化范围
喷射压力/MPa 120, 140,160
喷射时刻/°CA -7,-9,-11
喷射比例/mg 0:40,2:38,4:36
VNT开度/% 30,40,50
EGR率/% 20,30,40

Table 2

Basic technical parameters of test engine"

项目 单位 技术参数
缸数 4
缸径 mm 83
冲程 mm 92
压缩比 - 17.3
排量 L 1.991
标定功率/转速 kW/(r·min-1) 100/3600
最大转矩/转速 N·m/(r·min-1) 310/2200~2800
共轨系统 - BOSCH二代共轨系统
喷油器 - Bosch CR 12
喷孔数×喷孔直径 孔数×mm 7×0.131

Table 3

Main measurement instruments"

仪器设备 型号
电涡流测功机 CW260
油耗仪 FCMM-2
气缸压力传感器 Kistler6056A31U20
电荷放大器 Kistler5018A0001
燃烧分析仪 DS9100

Fig.1

Flow chart of computational mesh generation"

Table 4

Initial conditions, boundary condition and submodels"

项目 数值
头部温度/K 420
活塞温度/K 473
缸内温度/K 420
初始压力/MPa 0.1
初始温度/K 330
TKE/( m2?s-2) 70.78
TLS/m 0.00307
初次破碎模型 DDM
二次破碎模型 KH-RT
液滴扩散模型 Hug-Gosman
碰壁模型 walljet1
蒸发模型 Dukowicz
燃烧模型 ECFM-3Z

Fig.2

Comparisons between simulation and experiment results of cylinder pressure and rate of heat release curve"

Fig.3

Concentration and temperature distribution characteristic of different crank angle"

Fig.4

Quantitative evaluation parameters of heat release rate"

Table 5

Quantitative evaluation parameters of heat release rate of different injection pressure"

参 数 喷射压力/MPa
120 140 160
燃烧始点/°CA 0.3 0.3 0.3
预混合燃烧速率/[J·(°CA)-1] 2.83 3.19 4.28
扩散燃烧速率/[J·(°CA)-1] 3.19 1.91 1.48
燃烧持续期/°CA 35.75 31.07 25.07

Table 6

Quantitative evaluation parameters of heat release rate of different injection timing"

参 数 喷射时刻/℃A
120 140 160
燃烧始点/°CA 1.9 0.3 -1.1
预混合燃烧速率/[J·(°CA)-1] 4.12 4.28 4.32
扩散燃烧速率/[J·(°CA)-1] 0.75 0.85 0.98
燃烧持续期/°CA 26.41 26.06 26.68

Table 7

Quantitative evaluation parameters of heat release rate of different injection proportion"

参 数 喷射比例
0:40 2:38 4:36
燃烧始点/°CA 0.3 -0.1 -1.3
预混合燃烧速率/[J·(°CA)-1] 4.28 3.93 3.86
扩散燃烧速率/[J·(°CA)-1] 0.85 1.56 1.81
燃烧持续期/°CA 26.06 27.35 28.33

Table 8

Quantitative evaluation parameters of heat release rate of different EGR rate"

参 数 EGR率/%
20 30 40
燃烧始点/°CA 0.3 0.7 1.3
预混合燃烧速率/[J·(°CA)-1] 4.28 4.22 4.18
扩散燃烧速率/[J·(°CA)-1] 1.48 1.58 1.66
燃烧持续期/°CA 26.06 26.07 26.79

Table 9

Quantitative evaluation parameters of heat release rate of different injection VNT level"

参 数 VNT开度/%
30 40 50
燃烧始点/°CA 0.3 0.1 0.1
预混合燃烧速率/[J·(°CA)-1] 4.28 3.96 3.79
扩散燃烧速率/[J·(°CA)-1] 1.3 1.48 1.85
燃烧持续期/°CA 26.06 24.01 23.04

Fig.5

Basic structure of ANN model"

Fig.6

MSE versus number of neurons in hidden layer"

Fig.7

The best ANN training result"

Fig.8

MSE varying with epochs by back-propagation algorithm"

Fig.9

Scatter plots of experiment data versus ANN predicted model for training, validation, and test phases"

[1] Heywood J B . Internal Combustion Engine Funda-Mentals[M]. New York: McGraw-Hill, 1988.
[2] Kim J, Jang J, Lee K , et al. Combustion and emissions characteristics of diesel and soybean biodiesel over wide ranges of intake pressure and oxygen concentration in a compression-ignition engine at a light-load condition[J]. Fuel, 2014,129:11-19.
doi: 10.1016/j.fuel.2014.03.022
[3] Li Xin-ling, Xu Zhen, Guan Chun , et al. Impact of exhaust gas recirculation (EGR) on soot reactivity from a diesel engine operating at high load[J]. Applied Thermal Engineering, 2014,68(1/2):100-106.
doi: 10.1016/j.applthermaleng.2014.04.029
[4] Wang Ying, Li Dong-chang, Lei Xiong , et al. Combustion and emission characteristics of a DME (dimethyl ether)-diesel dual fuel premixed charge compression ignition engine with EGR (exhaust gas recirculation)[J]. Energy, 2014,72(7):608-617.
doi: 10.1016/j.energy.2014.05.086
[5] Asad U, Zheng M . Fast heat release characterization of a diesel engine[J]. International Journal of Thermal Sciences, 2008,47(12):1688-1700.
doi: 10.1016/j.ijthermalsci.2008.01.009
[6] Taghavifar H, Mardani A, Mohebbi A , et al. Exhaust emissions prognostication for DI diesel group-hole injectors using a supervised artificial neural network approach[J]. Fuel, 2014,125:81-89.
doi: 10.1016/j.fuel.2014.02.016
[7] Taghavifar H, Mardani A, Mohebbi A , et al. Investigating the effect of combustion properties on the accumulated heat release of DI engines at rated EGR levels using the ANN approach[J]. Fuel, 2014,137:1-10.
doi: 10.1016/j.fuel.2014.07.073
[8] Rezaei J, Shahbakhti M, Bahri B , et al. Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks[J]. Applied Energy, 2015,138:460-473.
doi: 10.1016/j.apenergy.2014.10.088
[9] Taghavifar H, Mardani A, Mohebbi A , et al. On the modeling of convective heat transfer coefficient of hydrogen fueled diesel engine as affected by combustion parameters using a coupled numerical-artificial neural network approach[J]. International Journal of Hydrogen Energy, 2015,40(12):4370-4381.
doi: 10.1016/j.ijhydene.2015.01.140
[10] Muralidharan K, Vasudevan D . Applications of artificial neural networks in prediction of performance, emission and combustion characteristics of variable compression ratio engine fuelled with waste cooking oil biodiesel[J]. J Braz Soc Mech Sci Eng, 2014,7(3):1-14.
doi: 10.1007/s40430-014-0213-4
[11] Mohammadhassani J, Dadvand A, Khalilarya S , et al. Prediction and reduction of diesel engine emissions using a combined ANN-ACO method[J]. Applied Soft Computing, 2015,34:139-150.
doi: 10.1016/j.asoc.2015.04.059
[12] Chen J, Randall R B . Improved automated diagnosis of misfire in internal combustion engines based on simulation models[J]. Mechanical Systems & Signal Processing, 2015,64- 65:58-83.
doi: 10.1016/j.ymssp.2015.02.027
[13] Dukowicz J K . Quasi-steady droplet change in the presence of convection[R]. Informal Report Los Alamos Scientific Laboratory, LA7997-MS, 1979.
[14] Patankar S V. Numerical Heat and Mass Transfer and Fluid Flow[M]. New York: Hemisphere Publishing Corporation, 1980.
[15] van der Vorst H A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[J]. SIAM J Sci Stat Comput, 1992,13:631-644.
doi: 10.1137/0913035
[1] Peng⁃fei ZANG,Zhe WANG,Yang GAO,Chen⁃le SUN. Investigation of integrated control strategy for stable operation of linear generator/engine system [J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 798-804.
[2] LI Zhi-jun, WANG Hao, HE Li, CAO Li-juan, ZHANG Yu-chi, ZHAO Xin-shun. Soot distribution features and its influence factors in catalytic diesel particulate filte [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1466-1474.
[3] QIN Jing, XU He, PEI Yi-qiang, ZUO Zi-nong, LU Li-li. Influence of initial temperature and initial pressure on premixed laminar burning characteristics of methane-dissociated methanol flames [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1475-1482.
[4] LIN Xue-dong, JIANG Tao, XU Tao, LI De-gang, GUO Liang. Control strategy of high pressure pump in starting condition of high pressure common rail diesel engine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1436-1443.
[5] ZHONG Bing, HONG Wei, JIN Zhao-hui, SU Yan, XIE Fang-xi, ZHANG Fu-wei. Movement characteristics of hydraulic variable valve train with early intake valve closing [J]. 吉林大学学报(工学版), 2018, 48(3): 727-734.
[6] LI Long, ZHANG You-tong, ZUO Zheng-xing. Application of variable-load control in cylinder pressure control of free-piston engine generator [J]. 吉林大学学报(工学版), 2018, 48(2): 473-479.
[7] WEI Hai-qiao, PEI Zi-gang, FENG Deng-quan, PAN Jia-ying, PAN Ming-zhang. Effect of multi-injectionpiezo injector on particulate emission in gasoline direct injection engine [J]. 吉林大学学报(工学版), 2018, 48(1): 166-173.
[8] TIAN Jing, LIU Zhong-chang, LIU Jin-shan, DONG Chun-xiao, ZHONG Ming, DU Wen-chang. Performance optimization of diesel engine based on response surface methodology of multi-boundary combustion conditions [J]. 吉林大学学报(工学版), 2018, 48(1): 159-165.
[9] LI Zhi-jun, HE Li, JIANG Rui, SHEN Bo-xi, KONG Xiang-jin, LIU Shi-yu. Evaluation of influence of ash distribution on diesel particulate filter pressure drop [J]. 吉林大学学报(工学版), 2017, 47(6): 1760-1766.
[10] YU Liu, LIU Zhong-chang, LIU Jiang-wei, DU Hong-fei, XU Yun. Gasoline direct injection engine spray droplet characteristics [J]. 吉林大学学报(工学版), 2017, 47(5): 1482-1488.
[11] LIU Zhong-chang, TENG Peng-kun, TIAN Jing, XU Yun, QI Sheng-lin, YU Kai-bo. Regulation characteristics of bypass valve of two stage turbocharged diesel engine [J]. 吉林大学学报(工学版), 2017, 47(3): 796-803.
[12] SUN Wen-xu, HONG Wei, XIE Fang-xi, SU Yan, JIANG Bei-ping, LI Xiang-yu. Effects of idle speed and throttle opening on engine shutdown characteristics and realization of direct start mode [J]. 吉林大学学报(工学版), 2017, 47(2): 483-489.
[13] LI Zhi-jun, WANG Nan, ZHANG Li-qiang, HUANG Qun-jin, WEI Suo-ku, ZHANG Yan-ke. Numerical simulation for flow and pressure drop characteristics in asymmetrical channels of diesel particulate filter [J]. 吉林大学学报(工学版), 2016, 46(6): 1892-1899.
[14] SUN Wen-xu, HONG Wei, HUANG En-li, XIE Fang-xi, SU Yan, JIANG Bei-ping. Effect of initial piston position on direct-start mode of gasoline engine without starter [J]. 吉林大学学报(工学版), 2016, 46(5): 1471-1477.
[15] LI Xiao-ping, HONG Wei, XIE Fang-xi, LI Xiang-yu, YANG Wen-hai, DAI Zhi-yao. NOx emission reduction of a lean-burn methanol engine by retarding ignition timing, exhaust gas recirculation and leaner air/fuel mixture [J]. 吉林大学学报(工学版), 2016, 46(5): 1478-1483.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Shoutao, LI Yuanchun. Autonomous Mobile Robot Control Algorithm Based on Hierarchical Fuzzy Behaviors in Unknown Environments[J]. 吉林大学学报(工学版), 2005, 35(04): 391 -397 .
[2] Li Yue-ying,Liu Yong-bing,Chen Hua . Surface hardening and tribological properties of a cam materials[J]. 吉林大学学报(工学版), 2007, 37(05): 1064 -1068 .
[3] Nie Jian-jun,Du Fa-rong,Gao Feng . Finite time thermodynamics of real combined power cycle operating
between internal combustion engine and Stirling engine with heat leak
[J]. 吉林大学学报(工学版), 2007, 37(03): 518 -0523 .
[4] Bao Tie,Liu Shu-fen . Network fault management formal description based on Communication Sequential Processes (CSP)[J]. 吉林大学学报(工学版), 2007, 37(01): 117 -120 .
[5] Dong Li-yan, Yuan Sen-miao,Liu Guang-yuan, Li Yong-li,Guan Wei-zhou . Constrained classifier learning algorithm based on genetic algorithm[J]. 吉林大学学报(工学版), 2007, 37(03): 595 -0599 .
[6] Cheng Ping,Zhang Hai-tao,Gao Yan,Li Jun-feng,Wang Hong-yan . Application of ANN in property prediction of polyacrylate emulsion
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[7] Fan Yong-kai,Lin Jun,Sun Tian-ze,Sui Yang-yi . Requirementdriven virtual instrument software automatic generation framework[J]. 吉林大学学报(工学版), 2007, 37(03): 606 -0610 .
[8] Zhang Da-qing;He Qing-hua;Hao Peng;Chen Qian-gen . Robust trajectory tracking control of hydraulic excavator bucket[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[9] Liang Ji-cai, Li Yi, Li Zhong-ran, Zhang Wei, Liu Cheng-de . Numerical simulation of filling process in resin transfer molding for automobile bumper[J]. 吉林大学学报(工学版), 2006, 36(增刊2): 15 -19 .
[10] Lü Jian-ting,Ma Guang-fu,Li Chuan-jiang . Fuzzy sliding mode controller design for satellite attitude tracking[J]. 吉林大学学报(工学版), 2007, 37(04): 955 -958 .