Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (6): 1887-1894.doi: 10.13229/j.cnki.jdxbgxb20170769

Previous Articles     Next Articles

Saliency region detection combining absorbing Markov chain and manifold ranking

SU Han-song,DAI Zhi-tao(),LIU Gao-hua,ZHANG Qian-fang   

  1. School of Electrical Automation and Information Engineering, Tianjin University, Tianjin 300072,China
  • Received:2017-07-20 Online:2018-11-20 Published:2018-12-11

Abstract:

Considering the low robustness of existing saliency detection methods in detecting complex nature images, a new saliency detection algorithm is proposed by combining the absorbing markov chain and manifold ranking. First, the entropy of the gray image is calculated to obtain the number of superpixels. Secondly, a two-stage saliency detection is used. In the first stage, the image edge superpixels are pre-processed, and then the first saliency map based on random walk on Absorbing Markov chain was computed by using background prior. In the second stage, the saliency scores computed by the first stage are used as foreground query seeds for manifold ranking in order to further optimize the saliency detection results. Experiments on publicly ASD and ECSSD databases demonstrate that, compared with the existing saliency detection methods, the proposed method can accurately highlight the saliency target, and effectively suppress the background area, while improve the performance evaluation of precision, recall and F-measure values.

Key words: information procession technology, saliency region detection, background prior, foreground query seed, absorbing Markov chain, manifold ranking

CLC Number: 

  • TN919.8

Fig.1

Basic framework of the proposed method"

Fig.2

Detection effect of the proposed method when the target touches the image edge"

Fig.3

Qualitative comparisons of different methods on ASD database"

Fig.4

Precision-recall curves on ASD database"

Fig.5

Values of precision, recall and F-measure on ASD database"

Fig.6

Precision-recall curves of the two-stage saliency on the proposed method on ASD database"

Fig.7

Precision-recall curves on ECSSD database"

Fig.8

Values of precision, recall and F-measure on ECSSD database"

Table 1

Average running time for different methods"

算法 代码 平均运行时间/s
SR Matlab 0.615
IT Matlab 0.611
GB Matlab+C 0.735
FT C 0.072
SF C 0.202
LR Matlab+C 0.40
RC Matlab 0.752
GC C 0.037
GS C 2.0
AMC Matlab+C 0.195
GMR C 0.149
SO Matlab+C 0.38
本文 Matlab+C 0.235
[1] Borji A, Itti L . State-of-the-art in visual attention modeling[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013,35:185-207.
doi: 10.1109/TPAMI.2012.89 pmid: 22487985
[2] Borji A, Cheng M M, Jiang H , et al. Salient object detection:a survey[J]. Eprint Arxiv, 2014,16(7):3118-3121.
[3] Li Y, Hou X D, Koch C. The secrets of salient object segmentation [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 280-287.
[4] Christopoulos C, Skodras A, Ebrahimi T . The JPEG2000 still image coding system: an overview[J]. IEEE Transaction on Consumer Electronics, 2000,46(4):1103-1127.
doi: 10.1109/30.920468
[5] Chen T, Cheng M M, Tan P , et al. Sketch2Photo:internet image montage[J]. ACM Transactions on Graphics, 2009,28(5):1-10.
[6] Achanta R, Hemami S, Estrada F. Frequency-tuned salient region detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition,Miami, 2009: 1597-1604.
[7] Yan Q, Xu L, Shi J P, et al. Hierarchical saliency detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013: 1155-1162.
[8] Li X, Li Y, Shen C, et al, Contextual hypergraph modeling for salient object detection [C]//IEEE International Conference on Computer Vision, Sydney, 2013: 3328-3335.
[9] Shen X, Wu Y. A unified approach to salient object detection via low rank matrix recovery [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 853-860.
[10] Perazzi F, Krahenbuhl P, Pritch Y, et al. Saliency filters: contrast based filtering for salient region detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 2012: 733-740.
[11] Cheng M M, Mitra N J, Huang X L , et al. Global contrast based salient region detection[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015,37(3):569-582.
doi: 10.1109/TPAMI.2014.2345401 pmid: 26353262
[12] Wei Y C, Wen F, Zhu W J, et al. Geodesic saliency using background priors [C]//European Conference on Computer Vision, Berlin, 2012: 29-42.
[13] Yang C, Zhang L, Lu H, et al. Saliency detection via graph-based manifold ranking [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Portland, 2013,9(4):3166-3173.
[14] Jiang B, Zhang L H, Lu H C , et al. Saliency detection via absorbing Markov chain[J/OL].[2017-07-15]..
[15] Zhang Jian-ming, Sclaroff Stan, Lin Zhe, et al. Minimum barrier salient object detection at 80 FPS [C]//IEEE International Conference on Computer Vision,Santiago, Chile, 2015: 1404-1412.
[16] Zhu W, Liang S, Wei Y, et al. Saliency optimization from robust background detection [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 2814-2821.
[17] Hou X D, Zhang L Q. Saliency detection: a spectral residual approach [C]//IEEE International Conference on Computer Vision and Pattern Recognitions, Minneapolis, 2007: 1-8.
[18] Itti L, Koch C, Niebur E . A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(11):1254-1259.
doi: 10.1109/34.730558
[19] Harel J, Koch C, Perona P . Graph-based visual saliency[J]. Advances in Neural Information Processing System, 2006,19:545-552.
[20] Cheng M M, Warrell J, Lin W Y , et al. Efficient salient region detection with soft image abstraction[DB/OL].[2017-07-16]..
[21] Tong N, Lu H, Xiang R, et al. Salient object detection via bootstrap learning [C]//IEEE International Conference on Computer Vision and Pattern Recognition,Washington DC,USA, 2015: 1884-1892.
[22] Yang J, Yang M H. Top-down visual saliency via joint crf and dictionary learning [C]//IEEE International Conference on Computer Vision and Pattern Recognition, Providence, RI, 2012: 2296-2303.
[23] Radhakrishna A, Appu S, Kevin S , et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012,34(11):2274-2282.
doi: 10.1109/TPAMI.2012.120 pmid: 22641706
[24] Tatler B W . The central fixation bias in scene viewing: selecting an optimal viewing position independently of motor biases and image feature distributions[J]. Journal of Vision, 2007,7(14):1-17.
[25] 谢畅, 朱恒亮, 林晓 , 等. 基于对比度优化流行排序的显著性目标检测算法[J]. 计算机应用, 2017,37(3):684-690.
Xie Chang, Zhu Heng-liang, Lin Xiao , et al. Salient target detection algorithm based on contrast optimized manifold ranking[J]. Journal of Computer Applications, 2017,37(3):684-690.
[26] 曹向海, 邓湖明, 黄波 . 背景感知的显著性检测算法[J]. 系统工程与电子设计, 2014,36(8):1668-1672.
doi: 10.3969/j.issn.1001-506X.2014.08.35
Cao Xiang-hai, Deng Hu-ming, Huang Bo . Background aware saliency detection[J]. Systems Engineering and Electronics, 2014,36(8):1668-1672.
doi: 10.3969/j.issn.1001-506X.2014.08.35
[27] 吕建勇, 唐振民 . 一种改进的马尔科夫吸收链显著性目标检测方法[J]. 南京理工大学学报:自然科学版, 2015,39(6):674-679.
doi: 10.14177/j.cnki.32-1397n.2015.39.06.007
Lv Jian-yong, Tang Zhen-min . Improved salient object detection based on absorbing Markov chain[J]. Journal of Nanjing University of Science and Technology(Natural Sciences), 2015,39(6):674-679.
doi: 10.14177/j.cnki.32-1397n.2015.39.06.007
[1] XU Yan,SUN Mei-shuang. Enhancing underwater image based on convolutional neural networks [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1895-1903.
[2] LI Ju-peng,ZHANG Zu-cheng,LI Mo-yu,MIAO De-fang. Smooth tracking with a kalman filter algorithm for capacitive touch panels [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1910-1916.
[3] HUANG Yong,YANG De-yun,QIAO Sai,MU Zhen-guo. Target detecting with conjugate CFAR in VHR SAR image [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1904-1909.
[4] LU Zhi-jun,ZHONG Chao,WU Jing-yu. Small feature segmentation method for Spaceborne SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1925-1930.
[5] SHAN Ze-biao, LIU Xiao-song, WANG Chun-yang, SHI Yi-ran, SHI Yao-wu. Joint estimation of DOA and Doppler frequency for coherence and/or same-direction signals [J]. 吉林大学学报(工学版), 2017, 47(6): 1949-1956.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Cheng Ping,Zhang Hai-tao,Gao Yan,Li Jun-feng,Wang Hong-yan . Application of ANN in property prediction of polyacrylate emulsion
[J]. 吉林大学学报(工学版), 2007, 37(02): 362 -0366 .
[2] Zhang Da-qing;He Qing-hua;Hao Peng;Chen Qian-gen . Robust trajectory tracking control of hydraulic excavator bucket[J]. 吉林大学学报(工学版), 2006, 36(06): 934 -938 .
[3] Dong Yun-feng,Qu Xing-tian,Shen Chuan-liang, Dong Jing-shi,Wu Bo-da . Servovalve driven by piezoelectric ceramics[J]. 吉林大学学报(工学版), 2006, 36(05): 678 -0680 .
[4] Xu An,Qiao Xiang-ming. Failure rate expression of complex equipment based on renewal theory[J]. 吉林大学学报(工学版), 2006, 36(03): 359 -0362 .
[5] Zhan Jun. Setup of vehicle longitudinal dynamic model for adaptive cruise control[J]. 吉林大学学报(工学版), 2006, 36(02): 157 -0160 .
[6] Wen Jian, Li Yanzhong, Zhou Aimin, Zhang Ke. Improvement of entrance configuration in platefin heat exchanger[J]. 吉林大学学报(工学版), 2006, 36(02): 177 -0182 .
[7] Wu Yi-hua, Yang Jun-feng, He Zheng-miao,Wang Yan-fang. Clock jitter measurement technique based on signal-to-noise ratio[J]. 吉林大学学报(工学版), 2006, 36(04): 604 -607 .
[8] Yang Zhijun, Tian Di, Zhou Bin. Network monitor based on NDIS intermediate driver[J]. 吉林大学学报(工学版), 2006, 36(02): 224 -0226 .
[9] Cai Li, Wang Yunmei. Empirical research on processbasedview valuation approach of venture[J]. 吉林大学学报(工学版), 2006, 36(02): 279 -284 .
[10] . [J]. 吉林大学学报(工学版), 2007, 37(06): 1247 -1250 .