Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (6): 1895-1903.doi: 10.13229/j.cnki.jdxbgxb20170815

Previous Articles     Next Articles

Enhancing underwater image based on convolutional neural networks

XU Yan(),SUN Mei-shuang   

  1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072,China
  • Received:2017-08-15 Online:2018-11-20 Published:2018-12-11

Abstract:

In order to avoid the problems of manually selecting features, difficulties in feature extraction and low visibility in traditional underwater image enhancing methods, an underwater image enhancing method based on convolution neural network was proposed. First, an underwater image dataset was established by simulation of underwater image formatting process by using clear images and underwater degraded model. Then, a convolution neural network model for underwater image enhancement was established, which can directly create a mapping relationship between the clear image and the underwater image. Finally, underwater images were restored by the features extracted by convolution neural network of underwater image. The experimental results show that the proposed method has less noise and improves contrast than tradition methods, and the algorithm provides a new idea for the underwater image enhancing research.

Key words: information procession technology, convolutional neural network, underwater images, image enhancing, visibility

CLC Number: 

  • TP391.4

Fig.1

Model of underwater image formation"

Fig.2

Absorption of light by water"

Fig.3

Attenuation coefficient of seepage volume with wavelength"

Fig.4

Underwater image database"

Fig.5

Network structure in this paper"

Table 1

Comparison of experimental results by different feature maps"

试验
编号
第1层特
征图数量
第2层特
征图数量
第3层特
征图数量
第4层特
征图数量
平均
PSNR/dB
1 32 32 16 3 25.981
2 64 32 16 3 26.363
3 64 64 16 3 26.292
4 64 64 64 3 26.120
5 128 32 16 3 26.310
6 128 64 16 3 26.330
7 256 64 16 3 26.169

Table 2

Comparison of experimental results by different convolution kernels"

试验编号 第1层卷积核尺寸 第2层卷积核尺寸 第3层卷积核尺寸 第4层卷积核尺寸 平均PSNR/dB
1 7×7 5×5 5×5 3×3 26.363
2 5×5 5×5 5×5 3×3 26.181
3 5×5 5×5 3×3 3×3 26.121
4 3×3 3×3 3×3 3×3 26.080

Table 3

Network configurations in this paper"

层的
名称
特征图
个数
卷积核
尺寸
特征图扩
充尺寸
卷积核移
动步长
1 64 7×7 2 1
2 32 5×5 2 1
3 16 5×5 2 1
4 3 3×3 2 1

Fig.6

Enhancing results comparison of picture Aloe"

Fig.7

Enhancing results comparison of picture Teddy"

Fig.8

Enhancing results comparison of picture Reindeer"

Table 4

Comparison of results of PSNR and RMSE"

指标 算法 图 片
Teddy Art Reindeer Aloe Dolls
PSNR/dB Fattal 10.134 11.759 13.001 10.012 10.681
Fu 15.712 14.251 12.136 11.709 15.024
Ancuti 14.891 11.971 10.484 16.094 12.946
本文 25.926 25.104 25.585 26.801 26.599
RMSE Fattal 8.639 7.687 7.039 8.839 8.209
Fu 5.953 6.489 7.046 7.477 6.061
Ancuti 6.179 7.274 7.851 5.771 6.778
本文 3.804 3.058 3.141 2.909 3.048

Fig.9

Comparison of underwater image enhancing results"

Table 5

Comparison of algorithm evaluation index of natural underwater image scene"

算法 均值 标准差 信息熵 平均梯度
Fattal 98.4971 61.3326 6.8398 6.2389
Fu 135.9848 69.0856 7.0569 8.4456
Ancuti 144.8726 68.5824 7.7185 9.1866
本文 143.2409 69.2448 7.7712 9.5125
[1] Fattal R . Single image dehazing[J]. ACM Transactions on Graphics, 2008,27(3):11-15.
[2] 张凯, 裘溯, 王霞 , 等. 水下彩色图像的亮度通道多尺度Retinex增强算法[J]. 红外技术, 2011,33(11):630-634.
Zhang Kai, Qiu Su, Wang Xia , et al. Multi-scale retinex enhancement algorithm on luminance channel of color underwater image[J]. Infrared Technology, 2011,33(11):630-634.
[3] Land E H, McCann J . Lightness and Retinex theory[J]. Journal of the Optical Society of America, 1971,61(1):1-11.
doi: 10.1364/JOSA.61.000001
[4] He K M, Sun J, Tang X O . Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011,33(12):2341-2353.
doi: 10.1109/TPAMI.2010.168 pmid: 20820075
[5] Chiang J Y, Chen Y C . Underwater image ehancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012,21(4):1756-1769.
doi: 10.1109/TIP.2011.2179666 pmid: 22180510
[6] Ancuti C O, Bekaert P, Haber T, et al. Enhancing underwater images and videos by fusion [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition, RI, USA, 2012: 81-88.
[7] 刘智, 黄江涛, 冯欣 . 构建多尺度深度卷积神经网络行为识别模型[J]. 光学精密工程, 2017,25(3):799-805.
doi: 10.3788/OPE.20172503.0799
Liu Zhi, Huang Jiang-tao, Feng Xin . Action recognition model construction based on multi-scale deep convolution neural network[J]. Optics and Precision Engineering, 2017,25(3):799-805.
doi: 10.3788/OPE.20172503.0799
[8] 熊昌镇, 单艳梅, 郭芬红 . 结合主体检测的图像检索方法[J]. 光学精密工程, 2017,25(3):792-798.
doi: 10.3788/OPE.20172503.0792
Xiong Chang-zhen, Shan Yan-mei, Guo Fen-hong . Image retrieval method based on image principal part detection[J]. Optics and Precision Engineering, 2017,25(3):792-798.
doi: 10.3788/OPE.20172503.0792
[9] 李琳辉, 伦智梅, 连静 , 等. 基于卷积神经网络的道路车辆检测方法[J]. 吉林大学学报:工学版, 2017,47(2):384-391.
doi: 10.13229/j.cnki.jdxbgxb201702006
Li Lin-hui, Lun Zhi-mei, Lian Jing , et al. Convolution neural network-based vehicle detection method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(2):384-391.
doi: 10.13229/j.cnki.jdxbgxb201702006
[10] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014: 580-587.
[11] Liu S, Liang X, Liu L, et al. Matching-CNN meets KNN: quasi-parametric human parsing [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 1419-1427.
[12] Cai B, Xu X, Jia K , et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016,25(11):5187-5198.
doi: 10.1109/TIP.2016.2598681
[13] Jaffe J S . Computer modeling and the design of optimal underwater imaging systems[J]. IEEE Journal of Oceanic Engineering, 2002,15(2):101-111.
doi: 10.1109/48.50695
[14] 杨爱萍, 郑佳, 王建 , 等. 基于颜色失真去除与暗通道先验的水下图像复原[J]. 电子与信息学报, 2015,37(11):2541-2547.
doi: 10.11999/JEIT150483
Yang Ai-ping, Zheng Jia, Wang Jian , et al. Underwater image restoration based on color cast removal and dark channel prior[J]. Journal of Electronics and Information Technology, 2015,37(11):2541-2547.
doi: 10.11999/JEIT150483
[15] 马淼, 李贻斌 . 基于多级图像序列和卷积神经网络的人体行为识别[J]. 吉林大学学报:工学版, 2017,47(4):1244-1252.
doi: 10.13229/j.cnki.jdxbgxb201704033
Ma Miao, Li Yi-bin . Multi-level image sequences and convolutional neural networks based human action recognition method[J]. Journal of Jilin University (Engineering and Technology Edition), 2017,47(4):1244-1252.
doi: 10.13229/j.cnki.jdxbgxb201704033
[16] 刘万军, 梁雪剑, 曲海成 . 不同池化模型的卷积神经网络学习性能研究[J]. 中国图象图形学报, 2016,21(9):1178-1190.
Liu Wan-jun, Liang Xue-jian, Qu Hai-cheng . Learning performance of convolutional neural networks with different pooling models[J]. Journal of Image and Graphics, 2016,21(9):1178-1190.
[17] Duntley S Q . Light in the sea[J]. Journal of the Optical Society of America, 1963,53(2):214-233.
doi: 10.1364/JOSA.53.000214
[18] 默顿斯 L E, 张闻迪 . 水中摄影学[M]. 北京: 科学出版社, 1979.
[19] Lecun Y, Bottou L, Bengio Y , et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
doi: 10.1109/5.726791
[20] Scharstein D, Szeliski R, Zabih R . A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J]. International Journal of Computer Vision, 2002,47(1-3):7-42.
doi: 10.1023/A:1014573219977
[21] Scharstein D, Szeliski R. High-accuracy stereo depth maps using structured light [C]//2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Madison, WI, USA, 2003: 195-202.
[22] Scharstein D, Pal C . Learning conditional random Fields for stereo[J/OL]. [2017-07-30]..
[23] Hirschmuller H, Scharstein D . Evaluation of cost functions for stereo matching[J/OL].[2017-08-01]..
[24] Dong C, Loy C C, He K M , et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2016,38(2):295-307.
doi: 10.1109/TPAMI.2015.2439281 pmid: 26761735
[25] Kwon H H, Tai Y W, Lin S. Data-driven depth map refinement via multi-scale sparse representation [C]//2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015: 159-167.
[26] Fu X Y, Zhuang P X, Huang Y, et al. A retinex-based enhancing approach for single underwater image [C]//2014 IEEE International Conference on Image Processing, Paris, France, 2014: 4572-4576.
[1] LU Zhi-jun,ZHONG Chao,WU Jing-yu. Small feature segmentation method for Spaceborne SAR images [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1925-1930.
[2] LI Ju-peng,ZHANG Zu-cheng,LI Mo-yu,MIAO De-fang. Smooth tracking with a kalman filter algorithm for capacitive touch panels [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1910-1916.
[3] HUANG Yong,YANG De-yun,QIAO Sai,MU Zhen-guo. Target detecting with conjugate CFAR in VHR SAR image [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1904-1909.
[4] SU Han-song,DAI Zhi-tao,LIU Gao-hua,ZHANG Qian-fang. Saliency region detection combining absorbing Markov chain and manifold ranking [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1887-1894.
[5] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[6] SHAN Ze-biao, LIU Xiao-song, WANG Chun-yang, SHI Yi-ran, SHI Yao-wu. Joint estimation of DOA and Doppler frequency for coherence and/or same-direction signals [J]. 吉林大学学报(工学版), 2017, 47(6): 1949-1956.
[7] GAO Kun, TU Hui-zhao, SHI Heng, LI Zhen-fei. Effect of low visibility in haze weather condition on longitudinal driving behavior in different car-following stages [J]. 吉林大学学报(工学版), 2017, 47(6): 1716-1727.
[8] MA Miao, LI Yi-bin. Multi-level image sequences and convolutional neural networks based human action recognition method [J]. 吉林大学学报(工学版), 2017, 47(4): 1244-1252.
[9] LI Lin-hui, LUN Zhi-mei, LIAN Jing, YUAN Lu-shan, ZHOU Ya-fu, MA Xiao-yi. Convolution neural network-based vehicle detection method [J]. 吉林大学学报(工学版), 2017, 47(2): 384-391.
[10] LI Qing-rong, XIA Jun. The asymmetric crosstalk of stereoscopic display [J]. 吉林大学学报(工学版), 2013, 43(增刊1): 326-329.
[11] LI Xiu-xiu, ZHENG Jiang-bin, ZHANG Yan-ning, CHEN Ning. Multiple photo-consistency constraints for 3D volumetric reconstruction in multi-view [J]. , 2012, 42(04): 992-996.
[12] CHEN Chun-yi, YANG Hua-min, LI Wen-hui, JIANG Zhen-gang. Algorithm for rendering physically correct soft shadows based on ambient occlusion masks [J]. , 2012, 42(04): 971-978.
[13] CHEN Mou, XIAO Jian, JIANG Chang-sheng . Three dimensional path planning of UAV with improved ant algorithm [J]. 吉林大学学报(工学版), 2008, 38(04): 991-995.
[14] Feng Hao,Xi Jian-feng,Jiao Cheng-wu . Placement of roadside traffic signs based on visibility distance [J]. 吉林大学学报(工学版), 2007, 37(04): 782-785.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QIU Jian-xin,WANG Xi-ei,FAN Xiao-hun. Information Integration between Computer Aided Design System and[J]. 吉林大学学报(工学版), 2005, 35(05): 505 -0510 .
[2] Yue Jian-wei,Jiang Xin-liang . Macro computational model of rapid wall[J]. 吉林大学学报(工学版), 2006, 36(05): 824 -0828 .
[3] LU Xiu-quan,CHU Ya-xu,CAI Wei,MA Wen-xing,SONG Jian-jun. Predicting method for partial-filling performance of hydrodynamic retarder based on one-dimensional flow beam theory[J]. 吉林大学学报(工学版), 2011, 41(4): 988 -992 .
[4] Liu Zong-wei,Wang Deng-feng,Jiang Ji-guang,Liang Jie,Wang Shi-gang . Improving sound quality inside vehicle by
active noise control method
[J]. 吉林大学学报(工学版), 2008, 38(02): 258 -0262 .
[5] ZHANG Xiao-wei1,LIU San-yang1,CHI Xiao-ni2 . Efficient interval-genetic algorithm for multipeak global optimization[J]. 吉林大学学报(工学版), 2008, 38(04): 876 -879 .
[6] YAO Guo-feng,GAO Xue-fei . Controllability of structure with repeated eigenvalues[J]. 吉林大学学报(工学版), 2008, 38(06): 1359 -1365 .
[7] MENG Ling-qi,DU Yong,MA Sheng-biao,GUO Bin . Nonlinearity of vertical vibration of medium plate mill [J]. 吉林大学学报(工学版), 2009, 39(03): 712 -0715 .
[8] Guo Kong-hui,Wu Hai-dong,Lu Dang . Brush model for steadystate sideslip of tire on icy road[J]. 吉林大学学报(工学版), 2007, 37(02): 253 -0258 .
[9] Liu Feng,Wang Xin-wei . Differential quadrature method for nonlinear buckling analysis of tubing in straight wells [J]. 吉林大学学报(工学版), 2007, 37(01): 234 -238 .
[10] KONG Fan-sen,WANG Jun,SUN Hai-gang . Fuzzy comprehensive evaluation of equipment usability of engine cylinder block production line based on AHP[J]. 吉林大学学报(工学版), 2008, 38(06): 1332 -1336 .