Journal of Jilin University(Engineering and Technology Edition) ›› 2018, Vol. 48 ›› Issue (5): 1418-1425.doi: 10.13229/j.cnki.jdxbgxb20171028

Previous Articles     Next Articles

Optimization of thermal parameter identification for mass concrete

SONG Jun, SHI Xue-fei, RUAN Xin   

  1. Department of Bridge Engineering, Tongji University, Shanghai 200092, China
  • Received:2017-10-13 Online:2018-09-20 Published:2018-12-11

Abstract: In order to solve the problem of low accuracy and low efficiency of thermal parameter identification, a method of step identification for internal and external models is proposed. First, the selection principle of local model is built by analysis of the influence depth of surface convection. Second, the convergence of parameter identification is demonstrated by the global analysis method. Finally, a method of fitting the optimal solution with multiple recognition results is proposed. The results show that, in the first 96 h, the local model can reflect the law of the whole model, which can be used to improve the recognition efficiency. Convergence tolerance can cause 3% to 10% parameter error, and the fitting method can effectively reduce the error. The efficiency and accuracy of this method are verified by the example of a concrete pylon.

Key words: hydro-structure, concrete, hydration, thermal parameters, parameter identification

CLC Number: 

  • TV544
[1] Ballim Y.A numerical model and associated calorimeter for predicting temperature profiles in mass concrete[J]. Cement & Concrete Composites, 2004, 26(6):695-703.
[2] Hattel J H, Thorborg J.A numerical model for predicting the thermomechanical conditions during hydration of early-age concrete[J]. Applied Mathematical Modelling, 2003, 27(1):1-26.
[3] Lim C K, Kim J K, Seo T S.Prediction of concrete adiabatic temperature rise characteristic by semi-adiabatic temperature rise test and FEM analysis[J]. Construction & Building Materials, 2016, 125:679-689.
[4] 朱伯芳. 大体积混凝土温度应力与温度控制 [M].2版.北京:中国水利水电出版社,2012.
[5] 张伟平,童菲,邢益善,等. 混凝土导热系数的试验研究与预测模型[J]. 建筑材料学报,2015,18(2):183-189.
Zhang Wei-ping, Tong Fei, Xing Yi-shan, et al.Experimental study and prediction model of thermal conductivity of concrete[J]. Journal of Building Materials, 2015,18(2):183-189.
[6] 张建荣,刘照球. 混凝土对流换热系数的风洞实验研究[J]. 土木工程学报,2006,39(9):39-42.
Zhang Jian-rong, Liu Zhao-qiu.A study on the convective heat transfer coefficient of concrete in wind tunnel experiment[J]. China Civil Engineering Journal, 2006,39(9):39-42.
[7] 黄达海,刘广义,刘光廷. 大体积混凝土热学参数反分析新方法[J]. 计算力学学报,2003,20(5):574-578.
Huang Da-hai, Liu Guang-yi, Liu Guang-ting.A new method for back analysis on thermal parameters of mass concrete needs[J]. Chinese Journal of Computational Mechanics, 2003,20(5):574-578.
[8] 张宇鑫. 大体积混凝土温度应力反正分析与反分析[D]. 大连:大连理工大学土木建筑学院,2002.
Zhang Yu-xin.Simulating analysis and inverse analysis on thermal stresses of mass concrete [D]. Dalian:School of Civil Engineering and Architecture,Dalian University of Technology, 2002.
[9] 吴相豪, 吴中如.混凝土热力学参数反分析模型[J].水力发电,2001(2):20-22.
Wu Xiang-hao, Wu Zhong-ru.The inverse analysis model for concrete thermodynamics parameters[J]. Water Power, 2001(2):20-22.
[10] 宋志文,肖建庄,赵勇. 基于试验测定的混凝土热工参数反演计算[J].同济大学学报:自然科学版,2010,38(1):35-38.
Song Zhi-wen, Xiao Jian-zhuang, Zhao Yong.Back-analysis of concrete thermal parameters based on experimental measurements[J]. Journal of Tongji University (Natural Science), 2010,38(1):35-38.
[11] 刘宁,张剑,赵新铭. 大体积混凝土结构热学参数随机反演方法初探[J]. 工程力学,2003,20(5):114-120.
Liu Ning, Zhang Jian, Zhao Xin-ming.Stochastic back analysis of thermal parameters of mass concrete structures[J]. Engineering Mechanics, 2003,20(5):114-120.
[12] 苏怀智,张志诚,夏世法. 带有冷却水管的混凝土温度场热学参数反演[J].水力发电,2003,29(12):44-46,54.
Su Huai-zhi, Zhang Zhi-cheng, Xia Shi-fa.Back analysis for thermal parameters of temperature field of the concrete with cooling pipe[J]. Water Power, 2003,29(12):44-46,54.
[13] 王振红,朱岳明,武圈怀,等. 混凝土热学参数试验与反分析研究[J]. 岩土力学,2009,30(6):1821-1825.
Wang Zhen-hong, Zhu Yue-ming, Wu Quan-huai, et al.Thermal parameters of concrete by test and back analysis[J]. Rock and Soil Mechanics, 2009,30(6):1821-1825.
[14] 崔溦,陈王,王宁. 早期混凝土热学参数优化及温度场精确模拟[J]. 四川大学学报:工程科学版,2014,46(3):161-167.
Cui Wei, Chen Wang, Wang Ning.Early concrete thermal parameters optimization and accurate thermal field simulation[J]. Journal of Sichuan University (Engineering Science Edition), 2014,46(3):161-167.
[15] 张璐,赵文,李艺,等. 混杂纤维混凝土热工参数反分析研究[J]. 混凝土,2013(5):21-27.
Zhang Lu, Zhao Wen, Li Yi, et al.Back analysis of thermodynamic parameter of hybrid fiber reinforced concrete[J]. Concrete, 2013(5):21-27.
[16] 章国美,朱岳明. 基于快速模拟退火算法的混凝土热学参数反演分析[J]. 水利水电技术,2007,38(1):56-58.
Zhang Guo-mei, Zhu Yue-ming.Inverse analysis on concrete thermal parameters based on fast simulated annealing algorithm[J]. Water Resources and Hydropower Engineering, 2007,38(1):56-58.
[17] 李守巨,刘迎曦. 基于模糊理论的混凝土热力学参数识别方法[J]. 岩土力学,2004,25(4):570-573.
Li Shou-ju, Liu Ying-xi.Identification of concrete thermal parameters based on fuzzy theory[J]. Rock and Soil Mechanics, 2004,25(4):570-573.
[18] 张永健,李鸥. 洞庭湖大桥承台大体积混凝土温控试验研究[J]. 桥梁建设,2016,46(4):45-50.
Zhang Yong-jian, Li Ou.Test study of temperature control of mass concrete for pile caps of Dongting Lake bridge[J]. Bridge Construction, 2016,46(4):45-50.
[19] Ito N, Kimura K, Oka J.A field experiment study on the convective heat transfer coefficient on the exterior surface of a building[J]. Ashrae Trans, 1972, 78:184-191.
[20] 王建,卢兆辉,路振刚. 无坝体温度监测数据老坝的导温系数反演分析[J].河海大学学报:自然科学版,2012,40(6):636-640.
Wang Jian, Lu Zhao-hui, Lu Zhen-gang.Inverse analysis of thermal diffusivity for old dams without temperature monitoring data[J]. Journal of Hohai University(Natural Sciences), 2012, 40(6):636-640.
[21] ACI Committee 301. Specifications for structural concrete[R]. ACI 301-10,American Concrete Institute, 2010:34.
[22] Tu A D.Influence of footing dimensions on early-age temperature development and cracking in concrete footings[J]. J Bridge Eng, 2015,20(3):06014007.
[23] 万华平,任伟新,王宁波. 高斯过程模型的全局灵敏度分析的参数选择及采样方法[J]. 振动工程学报,2015,28(5):714-720.
Wan Hua-ping, Ren Wei-xin, Wang Ning-bo.A Gaussian process model based global sensitivity analysis approach for parameter selection and sampling methods[J]. Journal of Vibration Engineering, 2015,28(5):714-720.
[24] 朱伯芳. 考虑温度影响的混凝土绝热温升表达式[J]. 水力发电学报,2003(2):69-73.
Zhu Bo-fang.A method for computing the adiabatic temperature rise of concrete considering the effect of the temperature of concrete[J]. Journal of Hydroelectric Engineering, 2003(2):69-73.
[1] DAI Yan, NIE Shao-feng, ZHOU Tian-hua. Finite element analysis of hysteretic behavior of square steel tube confined steel reinforced concrete column steel frame ring beam joint [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1426-1435.
[2] JI Wen-yu, LI Wang-wang, GUO Min-long, WANG Jue. Experimentation and calculation methods of prestressed RPC-NC composite beam deflection [J]. 吉林大学学报(工学版), 2018, 48(1): 129-136.
[3] WEI Zhi-gang, SHI Cheng-lin, LIU Han-bing, ZHANG Yun-long. Dynamic characteristics of steel-concrete composite simply supported beam under vehicles [J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[4] JIN Chao-qiong, ZHANG Bao, LI Xian-tao, SHEN Shuai, ZHU Feng. Friction compensation strategy of photoelectric stabilized platform based on disturbance observer [J]. 吉林大学学报(工学版), 2017, 47(6): 1876-1885.
[5] LI Jing, WANG Zhe. Mechanical characteristics of concrete under true triaxial loading condition [J]. 吉林大学学报(工学版), 2017, 47(3): 771-777.
[6] YU Tian-lai, LIU Xing-guo, YAO Shuang, Muhammad Mansour. Fatigue performance of RC beams strengthened with externally prestressed CFRP tendons [J]. 吉林大学学报(工学版), 2016, 46(6): 1867-1873.
[7] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[8] SUN Wei, LI Jian, JIA Shi. Identification of nonlinear stiffness and damping for hard-coating composite structure [J]. 吉林大学学报(工学版), 2016, 46(4): 1156-1162.
[9] QIN Yu-gang, MA Yong, ZHANG Liang, LI Teng-fei. Parameter identification of ship's maneuvering motion based on improved least square method [J]. 吉林大学学报(工学版), 2016, 46(3): 897-903.
[10] GUO Xue-dong, MA Li-jun, ZHANG Yun-long. Analytical solution of the double joint layer composite beam with shear-slip under vertical concentrated load [J]. 吉林大学学报(工学版), 2016, 46(2): 432-438.
[11] GAO Xiao-jian, SUN Bo-chao, YE Huan, WANG Zi-long. Influence of mineral admixtures on the rheological behavior of self-compacting concrete [J]. 吉林大学学报(工学版), 2016, 46(2): 439-444.
[12] XIAO Xiang, HUANG En-hou, NI Ying-sheng. Theoretical analysis and experiment of the effect of flange width on beam-plates system of prestressed concrete [J]. 吉林大学学报(工学版), 2015, 45(6): 1784-1790.
[13] HOU Zhong-ming, WANG Yuan-qing, XIA He, ZHANG Tian-shen. Simply-supported steel-concrete composite beams under moving load [J]. 吉林大学学报(工学版), 2015, 45(5): 1420-1427.
[14] GAO Xin, WU Xiao-wei, TIAN Jun. Structure of nonlinear finite element model of lightweight aggregate concrete share wall and the factors affecting seismic performance [J]. 吉林大学学报(工学版), 2015, 45(5): 1428-1435.
[15] SU Ying-she, YANG Yuan-yuan. Seismic compression performance of the concrete under high temperature [J]. 吉林大学学报(工学版), 2015, 45(5): 1436-1442.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .