吉林大学学报(工学版) ›› 2013, Vol. 43 ›› Issue (03): 665-670.doi: 10.7964/jdxbgxb201303018

Previous Articles     Next Articles

Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading

XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san   

  1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
  • Received:2012-03-08 Online:2013-05-01 Published:2013-05-01

Abstract: Based on the nonlinear fatigue damage model and damage accumulative model of materials, the damage elastic modulus of concrete and the damage residual area of steel reinforcement bars and prestressed tendons were introduced into the section stiffness calculation. The stiffness degradation model of the prestressed concrete beam under multilevel amplitude cycle loading was deduced, and genetic algorithm was applied in parameter determination. Then, the neural network method for forecasting the fatigue stiffness degradation was proposed and Matlab program code of the calculation model was generated. Experiment of prestressed concrete beam under multilevel amplitude cycle loading was carried out to establish the parameters, improve the calculation accuracy and verify the calculation results. It is suggested that the stiffness degradation of the prestressed concrete beam under multilevel amplitude cycle loading could be divided into three stages. The model calculation results agree well with experiment results, with a deviation within 5%. The genetic algorithm based model parameter fitting method and the neural network based forecasting method can give accurate results, thus providing useful reference for the estimation of fatigue resistance of prestressed concrete beam.

Key words: bridge engineering, prestressed concrete, multilevel amplitude cycle loading, stiffness degradation, fatigue deflection, damage stiffness forecasting

CLC Number: 

  • U441
[1] Naaman A E. Fatigue in partially prestressed concrete beams//Recent Research in Fatigue of Concrete Structures, Michigan: American Concrete Institute, 1982: 25-46.

[2] Naaman A E, Founas M. Partially prestressed beams under random-amplitude fatigue loading[J]. Journal of Structural Engineering, 1991, 117(12):3742-3761.

[3] Crespo-Minguillón C, Casas J R. Fatigue reliability analysis of prestressed concrete bridges[J]. Journal of Structural Engineering, 1998, 124(12): 1458-1466.

[4] Maes M A, Wei X, Dilger W H. Fatigue reliability of deteriorating prestressed concrete bridges due to stress corrosion cracking[J]. Canadian Journal of Civil Engineering, 2001, 28(4): 673-683.

[5] 冯秀峰, 宋玉普, 朱美春. 随机变幅疲劳荷载下预应力混凝土梁疲劳寿命的试验研究[J]. 土木工程学报, 2006, 39(9): 32-38. Feng Xiu-feng, Song Yu-pu, Zhu Mei-chun. An experimental study on the fatigue life of prestressed concrete beams under random-amplitude fatigue loading[J]. China Civil Engineering Journal, 2006, 39(9): 32-38.

[6] 冯秀峰, 宋玉普, 宋元成. 预应力混凝土受弯构件疲劳损伤全过程非线性分析[J]. 大连理工大学学报, 2005, 45(3): 410-415. Feng Xiu-feng, Song Yu-pu, Song Yuan-cheng. Full-range nonlinear analysis of fatigue damage in prestressed concrete flexural members[J]. Journal of Dalian University of Technology, 2005, 45(3): 410-415.

[7] 侯杰, 程赫明, 王时越, 等. 预应力钢纤维混凝土板弯曲疲劳挠度试验研究[J]. 建筑结构学报,2007(增刊1):219-223. Hou Jie, Cheng He-ming, Wang Shi-yue, et al. Experimental investigation of fatigue deflection of steel fiber reinforced prestressed concrete slab[J]. Journal of Building Structures, 2007 (Sup.1): 219-223.

[8] 吕海燕, 戴公连, 李德建. 预应力混凝土梁在疲劳荷载作用下的变形[J]. 长沙铁道学院学报, 1998, 16(1): 24-28. Lü Hai-yan, Dai Gong-lian, Li De-jian. Deflection of prestressed concrete beam under fatigue load[J]. Journal of Changsha Railway University, 1998, 16(1): 24-28.

[9] 潘华. 混凝土受弯构件疲劳性能的试验研究. 南京: 东南大学土木工程学院, 2006. Pan Hua. Experimental study on fatigue behaviors of concrete flexural components. Nanjing: School of Civil Engineering, Southeast University, 2006.

[10] Matsushita H, Tokumitsu Y. A study on compressive fatigue strength of concrete considered survival probability[J]. Proceeding of JSCE, 1972, 198: 127-138.

[11] Cornelissen H A W, Reinhardt H W. Fatigue of plain concrete in uniaxial tension and in alternating tension compression loading[J]. Fatigue of Steel and Concrete Structures, 1982: 273-282.

[12] Cornelissen H A W, Reinhardt H W. Uniaxial tensile fatigue failure of concrete under constant-amplitude and programme loading[J]. Magazine of Concrete Research, 1984, 36(129): 216-226.

[13] 曾志斌, 李之榕. 普通混凝土梁用钢筋的疲劳S-N曲线研究[J]. 土木工程学报, 1999, 32(5): 10-14. Zeng Zhi-bin, Li Zhi-rong. Research on fatigue S-N curves of reinforcing bars in common reinforced concrete beams[J]. China Civil Engineering Journal, 1999, 32(5): 10-14.

[14] 马林. 国产1860级低松弛预应力钢绞线疲劳性能研究[J]. 铁道标准设计, 2000, 20(5): 21-23. Ma Lin. Fatigue performance on 1860 MPa low relaxation PC strand[J]. Railway Standard Design, 2000, 20(5): 21-23.
[1] HUI Ying-xin,MAO Ming-jie,LIU Hai-feng,ZHANG Shang-rong. Influence of structural seismic response of bridges crossing active fault [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1725-1734.
[2] ZHENG Yi-feng, ZHAO Qun, BAO Wei, LI Zhuang, YU Xiao-fei. Wind resistance performance of long-span continuous rigid-frame bridge in cantilever construction stage [J]. 吉林大学学报(工学版), 2018, 48(2): 466-472.
[3] WEI Zhi-gang, LIU Han-bing, SHI Cheng-lin, GONG Ya-feng. Calculation of transverse distribution coefficient of simply supported beam bridge with effect of bridge deck pavement [J]. 吉林大学学报(工学版), 2018, 48(1): 105-112.
[4] GONG Ya-feng, HE Yu-long, TAN Guo-jin, SHEN Yang-fan. Anti-overturning stability analysis for three-span continuous curved girder bridge with single column pier [J]. 吉林大学学报(工学版), 2018, 48(1): 133-140.
[5] WEI Zhi-gang, SHI Cheng-lin, LIU Han-bing, ZHANG Yun-long. Dynamic characteristics of steel-concrete composite simply supported beam under vehicles [J]. 吉林大学学报(工学版), 2017, 47(6): 1744-1752.
[6] ZHANG Yun-long, LIU Zhan-ying, WU Chun-li, WANG Jing. Static and dynamic responses of steel-concrete composite beams [J]. 吉林大学学报(工学版), 2017, 47(3): 789-795.
[7] CAO Shan-shan, LEI Jun-qing. Fatigue life prediction of steel structure considering interval uncertainty [J]. 吉林大学学报(工学版), 2016, 46(3): 804-810.
[8] TAN Guo-jin, LIU Zi-yu, WEI Hai-bin, WANG Long-lin. Calculation of natural frequency of simply supported beam bridge reinforced with eccentric prestressed tendons [J]. 吉林大学学报(工学版), 2016, 46(3): 798-803.
[9] LIU Han-bing, SHI Cheng-lin, TAN Guo-jin. Finite element solution of composite beam with effect of shear slip [J]. 吉林大学学报(工学版), 2016, 46(3): 792-797.
[10] XIAO Xiang, HUANG En-hou, NI Ying-sheng. Theoretical analysis and experiment of the effect of flange width on beam-plates system of prestressed concrete [J]. 吉林大学学报(工学版), 2015, 45(6): 1784-1790.
[11] JIAO Chang-ke, LI Ai-qun, WU Xiao-ping. Double-deck long-span cable-stayed bridge seismic response to multi-support excitation [J]. , 2012, 42(04): 910-917.
[12] XIN Da-bo, WANG Liang, DUAN Zhong-dong, OU Jin-ping, LI Hui, LI Zhong-hua. Static characteristics of bridge deck sections of long-span bridges under simultaneous actions of wind and rain [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 174-179.
[13] TAN Guo-jin, WANG Long-lin, CHENG Yong-chun. Prediction method for cable tension state of cable-stayed bridges based on grey system theory in cold areas [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 170-173.
[14] GONG Ya-feng, CHENG Yong-chun, JIAO Yu-bo. Damage identification of urban overpasses based on static strain data and neural networks optimized by genetic algorithm [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 164-169.
[15] LIU Han-bing, ZHENG Ji-guang, ZOU Pin-de. Calculation on bearing capacity of eccentric compression reinforced concrete short column with circular combined-section [J]. 吉林大学学报(工学版), 2011, 41(增刊2): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .
[10] XIAN Shu, ZHENG Jin, LU Xing, ZHANG Shi-peng. Identification approach of P2P flow based on the content redistribution model[J]. 吉林大学学报(工学版), 2013, 43(03): 727 -733 .