Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (3): 953-962.doi: 10.13229/j.cnki.jdxbgxb20180160
Previous Articles Next Articles
Jun CHEN1,2(),Qi⁃feng ZHANG1(),Ai⁃qun ZHANG1,3,Du⁃si CAI3
CLC Number:
1 | JamiesonA J, FujiiT, MayorD J, et al. Hadal trenches: the ecology of the deepest places on earth[J]. Trends in Ecology & Evolution, 2010,25(3):190⁃197. |
2 | LinleyT D, GerringerM E, YanceyP H, et al. Fishes of the hadal zone including new species, in situ, observations and depth records of Liparidae[J]. Deep Sea Research Part I Oceanographic Research Papers, 2016, 114:99⁃110. |
3 | LinleyT D, StewartA L , McmillanP J, et al. Bait attending fishes of the abyssal zone and hadal boundary: Community structure, functional groups and species distribution in the Kermadec, New Hebrides and Mariana trenches[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 121:38⁃53. |
4 | JamiesonA. The hadal zone: life in the deepest oceans[M]. Cambridge UK: Cambridge University Press, 2015. |
5 | BaileyD M, KingN J, PriedeI G. Cameras and carcasses: historical and current methods for using artificial food falls to study deep⁃water animals[J]. Marine Ecology Progress Series, 2007, 350: 179⁃191. |
6 | WhitmarshS K, FairweatherP G, HuveneersC. What is big BRUVver up to? Methods and uses of baited underwater video[J]. Reviews in Fish Biology & Fisheries, 2016: 1⁃21. |
7 | JamiesonA J, FujiiT, SolanM, et al. HADEEP: free⁃falling landers to the deepest places on earth[J]. Marine Technology Society Journal, 2009, 43(5):151⁃160. |
8 | WHOI. HADal Ecosystem Studies[EB/OL]. 2018-01-10.https:⫽web.whoi.edu/hades/. |
9 | JamiesonA J, KilgallenN M, RowdenA A, et al. Bait⁃attending fauna of the Kermadec Trench, SW Pacific Ocean: evidence for an ecotone across the abyssal–hadal transition zone[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(1):49⁃62. |
10 | JamiesonA J, PriedeI G, CraigJ. Distinguishing between the abyssal macrourids Coryphaenoides yaquinae and C. armatus from in situ photography[J]. Deep Sea Research Part I: Oceanographic Research Paper, 2012, 64:78⁃85. |
11 | StaufferC, GrimsonW E L. Adaptive background mixture models for real⁃time tracking[C]⫽IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Piscataway, IEEE, 1999. |
12 | PiccardiM. Background subtraction techniques: a review[C]⫽IEEE International Conference on Systems, Man and Cybernetics, Piscataway, IEEE, 2005. |
13 | 刘鑫, 刘辉, 强振平, 等. 混合高斯模型和帧间差分相融合的自适应背景模型[J]. 中国图象图形学报, 2008, 13(4):729⁃734. |
LiuXin, LiuHui, QiangZhen⁃ping, et al. Adaptive Background Modeling Based on Mixture Gaussian Model and Frame Subtraction[J]. Journal of Image and Graphics, 2008, 13(4):729⁃734. | |
14 | HsiaoY H, ChenC C, LinS I, et al. Real⁃world underwater fish recognition and identification, using sparse representation[J]. Ecological Informatics, 2014, 23:13⁃21. |
15 | SpampinatoC, GiordanoD, SalvoR D, et al. Automatic fish classification for underwater species behavior understanding[C]⫽ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams. ACM Paper, 2010:45⁃50. |
16 | SunX, ShiJ, DongJ, et al. Fish recognition from low⁃resolution underwater images[C]⫽International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, Datong, China, 2016:15⁃17. |
17 | ChenJ, ZhangQ, ZhangA, et al. 7000M lander design for hadal research[C]⫽OCEANS, St. John's, NL, Canada, 2014:1⁃4. |
18 | ChenJ, ZhangQ, ZhangA, et al. Sea trial and free⁃fall hydrodynamic research of a 7000⁃meter lander[C]⫽OCEANS, Piscataway, Washington, DC,USA,2015:1⁃5. |
19 | 陈俊, 张奇峰, 李俊,等. 深渊着陆器技术研究及马里亚纳海沟科考应用[J]. 海洋技术学报, 2017, 36(1):63⁃69. |
ChenJun, ZhangQi⁃feng, LiJun, et al. Research on the application of the hadal lander technology in the mariana trench[J]. Journal of Ocean Technology, 2017, 36(1):63⁃69. | |
20 | 曾祥进, 黄心汉, 王敏. 不变矩的改进支持向量机在显微目标识别中的应用研究[J]. 机器人, 2009,31(2): 118⁃123. |
ZengXiang⁃jin, HuangXin⁃han, WangMin. Application of invariant moment's improved support vector machine to micro⁃target identification[J]. Robot, 2009,31(2): 118⁃123. | |
21 | HuM K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962,8(2): 179⁃187. |
22 | 李强, 薛开, 徐贺, 等. 基于振动采用支持向量机方法的移动机器人地形分类[J]. 机器人, 2012, 34(6): 660⁃667. |
LiQiang, XueKai, XuHe, et al. Vibration⁃based terrain classification for mobile robots using support vector machine[J]. Robot, 2012, 34(6): 660⁃667. | |
23 | 陈建华, 奚如如, 王兴松, 等. 外骨骼机器人的非结构地面行走步态分类算法[J]. 机器人, 2017, 39(4): 505⁃513. |
ChenJian⁃hua, XiRu⁃ru, WangXing⁃song, et al. Walking gait classification algorithm for exoskeleton robot on unstructured ground[J]. Robot, 2017, 39(4): 505⁃513. | |
24 | Azimi⁃SadjadiM R, YaoD, JamshidiA A, et al. Underwater target classification in changing environments using an adaptive feature mapping[J]. IEEE Transactions on Neural Networks, 2002, 13(5):1099⁃1111. |
[1] | KUI Hai-lin, BAO Cui-zhu, LI Hong-xue, LI Ming-da. Idling time prediction method based on least square support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1360-1365. |
[2] | GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935. |
[3] | CAI Zhen-nao, LYU Xin-en, CHEN Hui-ling. Prediction model of somatization disorder based on an oppositional bacterial foraging optimization based support vector machine [J]. 吉林大学学报(工学版), 2018, 48(3): 936-942. |
[4] | YUAN Zhe-ming, ZHANG Hong-yang, CHEN Yuan. HIV-1 protease cleavage site prediction based on feature selection and support vector machine [J]. 吉林大学学报(工学版), 2017, 47(2): 639-646. |
[5] | LIANG Shi-li, WEI Ying, PAN Di, ZHANG Ling, XU Ting-fa, WANG Shuang-wei. Recognition to specific two words Chinese vocabulary based on projection matrix of spectrogram [J]. 吉林大学学报(工学版), 2017, 47(1): 294-300. |
[6] | ZHAO Yun-peng, YU Tian-lai, JIAO Yu-bo, GONG Ya-feng, SONG Gang. Damage identification method and factor evaluation for irregular-shaped bridge [J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866. |
[7] | SHANG Qiang, YANG Zhao-sheng, ZHANG Wei, Bing Qi-chun, ZHOU Xi-yang. Short-term traffic flow prediction based on singular spectrum analysis and CKF-LSSVM [J]. 吉林大学学报(工学版), 2016, 46(6): 1792-1798. |
[8] | ZHOU Bing-hai, XU Jia-hui. SVM-based real-time scheduling approach of multi-load carries [J]. 吉林大学学报(工学版), 2016, 46(6): 2027-2033. |
[9] | LU Ying, WANG Hui-qin, QIN Li-ke. Accurate fire location method in high and large-span space buildings [J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073. |
[10] | MA Zhi-xing, ZHAO Qi, ZHANG Hao. Fourier analysis model for housekeeping gene [J]. 吉林大学学报(工学版), 2016, 46(5): 1639-1643. |
[11] | WANG Pin, HE Xuan, LYU Yang, LI Yong-ming, QIU Ming-guo, LIU Shu-jun. Automatic segmentation of articular cartilages using multi-feature SVM and elastic region growing [J]. 吉林大学学报(工学版), 2016, 46(5): 1688-1696. |
[12] | ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102. |
[13] | SHEN Xuan-jing, ZHAI Yu-jie, LU Yu-tong, WANG Yu, CHEN Hai-peng. Speaker recognition algorithm based on channel compensation [J]. 吉林大学学报(工学版), 2016, 46(3): 870-875. |
[14] | DAI Kun, YU Hong-yi, QIU Wen-bo,LI Qing. Unsupervised feature selection algorithm based on support vector machine for network data [J]. 吉林大学学报(工学版), 2015, 45(2): 576-582. |
[15] | XU Miao,ZHAO Ding-xuan,NI Tao,XU Chun-bo. Load prediction of hybrid excavator based on least square support vector machine [J]. 吉林大学学报(工学版), 2015, 45(1): 133-138. |
|