Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (3): 953-962.doi: 10.13229/j.cnki.jdxbgxb20180160

Previous Articles     Next Articles

In⁃situ autonomous observation method based onhadal fish recognition

Jun CHEN1,2(),Qi⁃feng ZHANG1(),Ai⁃qun ZHANG1,3,Du⁃si CAI3   

  1. 1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
    2. University of Chinese Academy of Science, Beijing 100049, China
    3. Institute of Deep?sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
  • Received:2018-02-18 Online:2019-05-01 Published:2019-07-12
  • Contact: Qi?feng ZHANG E-mail:chenj@idsse.ac.cn;zqf@sia.cn

Abstract:

In?situ observation of hadal fish has been widely implemented for scientific research, usually on serial time or fixed time interval observation mode. However, the observation efficiency is extremely low since pre?programmed method cannot perceive the interested targets in camera view. A novel autonomous observation method combined with computer vision technology is proposed, where observation strategy could be dynamically adjusted according to the result of fish recognition. Moving targets are rapidly segmented from video frames based on improved background difference method. Invariant moment, eccentricity and roundness characteristics are extracted subsequently, and Fisher discriminant function is used for feature reduction. Fish target prediction model is then established with PSO?SVM algorism. The effectiveness of proposed autonomous observation method is validated through simulation experiment using in?situ observation video data of hadal trench expedition.

Key words: marine engineering and technology, autonomous observation, support vector machine, fish recognition, hadal fauna, video camera system

CLC Number: 

  • TP274

Fig.1

Block diagram of the autonomous observation system"

Fig.2

Hadal lander and arrangement of video camera system"

Fig. 3

Flow diagram of autonomous observation algorism"

Fig. 4

Binary images of hadal fish"

Fig. 5

Binary images of non?fish targets"

Fig.6

Comparison result of moving target detection based on background difference method"

Table 1

Single frame computing time"

场景算法时间/ms
无运动目标GMM635
本文算法74
少量运动目标GMM628
本文算法95
较多运动目标GMM641
本文算法212

Table 2

Normalized characteristic attribute of typical hadal fauna"

特征

物种

?1?2?3?4?5?6?7ERc
鱼类0.40640.25660.06300.05460.02090.10800.38450.53390.1624
端足类0.14240.06760.00170.00040.01780.07830.38380.25970.6076
等足类0.65610.52940.09490.08400.02520.14310.38240.83230.2040
十足类0.65440.51640.37500.34370.13890.33970.36250.75350.1749
多毛类0.23810.13060.00300.00100.01780.07840.38380.39350.3542
水母0.04600.00870.03740.00100.04120.07170.26880.06360.3674

Fig. 7

Feature discrimination ratio of the two classes"

Table 3

Recognition rate of different feature combinations"

特征向量平均识别准确率/%
?1,,?7,E,Rc89.31
?1,,?6,E,Rc89.26
?1,?2,?3,?4,?6,E,Rc89.41
?1,?2,?4,?6,E,Rc88.33

Table 4

Recognition rate of hadal fish"

组号TPFNTNFPR/%P/%A/%
124454118381.998.886.4
297288077.610078.9
3196941701867.691.676.6

Fig. 8

Sigle frame extracted from three test videos"

Fig. 9

Time series of fish observed inside camera view"

Fig.10

Simulation results of autonomous observation algorism"

Table 5

Comparison results of three observation methods"

自主观测连续观测固定间隔观测
TY?12TY?14TY?12TY?14TY?12TY?14
To/h6.663.546.663.546.663.54
Trec/h4.493.0313.9713.772.82.77
Tf/h4.012.146.663.541.330.66
ηi/%60.2160.4510010019.9718.64
ηe/%89.3170.6347.6725.7147.523.83
η/%53.7742.7047.6725.719.494.44
1 JamiesonA J, FujiiT, MayorD J, et al. Hadal trenches: the ecology of the deepest places on earth[J]. Trends in Ecology & Evolution, 2010,25(3):190⁃197.
2 LinleyT D, GerringerM E, YanceyP H, et al. Fishes of the hadal zone including new species, in situ, observations and depth records of Liparidae[J]. Deep Sea Research Part I Oceanographic Research Papers, 2016, 114:99⁃110.
3 LinleyT D, StewartA L , McmillanP J, et al. Bait attending fishes of the abyssal zone and hadal boundary: Community structure, functional groups and species distribution in the Kermadec, New Hebrides and Mariana trenches[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 121:38⁃53.
4 JamiesonA. The hadal zone: life in the deepest oceans[M]. Cambridge UK: Cambridge University Press, 2015.
5 BaileyD M, KingN J, PriedeI G. Cameras and carcasses: historical and current methods for using artificial food falls to study deep⁃water animals[J]. Marine Ecology Progress Series, 2007, 350: 179⁃191.
6 WhitmarshS K, FairweatherP G, HuveneersC. What is big BRUVver up to? Methods and uses of baited underwater video[J]. Reviews in Fish Biology & Fisheries, 2016: 1⁃21.
7 JamiesonA J, FujiiT, SolanM, et al. HADEEP: free⁃falling landers to the deepest places on earth[J]. Marine Technology Society Journal, 2009, 43(5):151⁃160.
8 WHOI. HADal Ecosystem Studies[EB/OL]. 2018-01-10.https:⫽web.whoi.edu/hades/.
9 JamiesonA J, KilgallenN M, RowdenA A, et al. Bait⁃attending fauna of the Kermadec Trench, SW Pacific Ocean: evidence for an ecotone across the abyssal–hadal transition zone[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2011, 58(1):49⁃62.
10 JamiesonA J, PriedeI G, CraigJ. Distinguishing between the abyssal macrourids Coryphaenoides yaquinae and C. armatus from in situ photography[J]. Deep Sea Research Part I: Oceanographic Research Paper, 2012, 64:78⁃85.
11 StaufferC, GrimsonW E L. Adaptive background mixture models for real⁃time tracking[C]⫽IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Piscataway, IEEE, 1999.
12 PiccardiM. Background subtraction techniques: a review[C]⫽IEEE International Conference on Systems, Man and Cybernetics, Piscataway, IEEE, 2005.
13 刘鑫, 刘辉, 强振平, 等. 混合高斯模型和帧间差分相融合的自适应背景模型[J]. 中国图象图形学报, 2008, 13(4):729⁃734.
LiuXin, LiuHui, QiangZhen⁃ping, et al. Adaptive Background Modeling Based on Mixture Gaussian Model and Frame Subtraction[J]. Journal of Image and Graphics, 2008, 13(4):729⁃734.
14 HsiaoY H, ChenC C, LinS I, et al. Real⁃world underwater fish recognition and identification, using sparse representation[J]. Ecological Informatics, 2014, 23:13⁃21.
15 SpampinatoC, GiordanoD, SalvoR D, et al. Automatic fish classification for underwater species behavior understanding[C]⫽ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams. ACM Paper, 2010:45⁃50.
16 SunX, ShiJ, DongJ, et al. Fish recognition from low⁃resolution underwater images[C]⫽International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, Datong, China, 2016:15⁃17.
17 ChenJ, ZhangQ, ZhangA, et al. 7000M lander design for hadal research[C]⫽OCEANS, St. John's, NL, Canada, 2014:1⁃4.
18 ChenJ, ZhangQ, ZhangA, et al. Sea trial and free⁃fall hydrodynamic research of a 7000⁃meter lander[C]⫽OCEANS, Piscataway, Washington, DC,USA,2015:1⁃5.
19 陈俊, 张奇峰, 李俊,等. 深渊着陆器技术研究及马里亚纳海沟科考应用[J]. 海洋技术学报, 2017, 36(1):63⁃69.
ChenJun, ZhangQi⁃feng, LiJun, et al. Research on the application of the hadal lander technology in the mariana trench[J]. Journal of Ocean Technology, 2017, 36(1):63⁃69.
20 曾祥进, 黄心汉, 王敏. 不变矩的改进支持向量机在显微目标识别中的应用研究[J]. 机器人, 2009,31(2): 118⁃123.
ZengXiang⁃jin, HuangXin⁃han, WangMin. Application of invariant moment's improved support vector machine to micro⁃target identification[J]. Robot, 2009,31(2): 118⁃123.
21 HuM K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962,8(2): 179⁃187.
22 李强, 薛开, 徐贺, 等. 基于振动采用支持向量机方法的移动机器人地形分类[J]. 机器人, 2012, 34(6): 660⁃667.
LiQiang, XueKai, XuHe, et al. Vibration⁃based terrain classification for mobile robots using support vector machine[J]. Robot, 2012, 34(6): 660⁃667.
23 陈建华, 奚如如, 王兴松, 等. 外骨骼机器人的非结构地面行走步态分类算法[J]. 机器人, 2017, 39(4): 505⁃513.
ChenJian⁃hua, XiRu⁃ru, WangXing⁃song, et al. Walking gait classification algorithm for exoskeleton robot on unstructured ground[J]. Robot, 2017, 39(4): 505⁃513.
24 Azimi⁃SadjadiM R, YaoD, JamshidiA A, et al. Underwater target classification in changing environments using an adaptive feature mapping[J]. IEEE Transactions on Neural Networks, 2002, 13(5):1099⁃1111.
[1] KUI Hai-lin, BAO Cui-zhu, LI Hong-xue, LI Ming-da. Idling time prediction method based on least square support vector machine [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1360-1365.
[2] GENG Qing-tian, YU Fan-hua, WANG Yu-ting, GAO Qi-kun. New algorithm for vehicle type detection based on feature fusion [J]. 吉林大学学报(工学版), 2018, 48(3): 929-935.
[3] CAI Zhen-nao, LYU Xin-en, CHEN Hui-ling. Prediction model of somatization disorder based on an oppositional bacterial foraging optimization based support vector machine [J]. 吉林大学学报(工学版), 2018, 48(3): 936-942.
[4] YUAN Zhe-ming, ZHANG Hong-yang, CHEN Yuan. HIV-1 protease cleavage site prediction based on feature selection and support vector machine [J]. 吉林大学学报(工学版), 2017, 47(2): 639-646.
[5] LIANG Shi-li, WEI Ying, PAN Di, ZHANG Ling, XU Ting-fa, WANG Shuang-wei. Recognition to specific two words Chinese vocabulary based on projection matrix of spectrogram [J]. 吉林大学学报(工学版), 2017, 47(1): 294-300.
[6] ZHAO Yun-peng, YU Tian-lai, JIAO Yu-bo, GONG Ya-feng, SONG Gang. Damage identification method and factor evaluation for irregular-shaped bridge [J]. 吉林大学学报(工学版), 2016, 46(6): 1858-1866.
[7] SHANG Qiang, YANG Zhao-sheng, ZHANG Wei, Bing Qi-chun, ZHOU Xi-yang. Short-term traffic flow prediction based on singular spectrum analysis and CKF-LSSVM [J]. 吉林大学学报(工学版), 2016, 46(6): 1792-1798.
[8] ZHOU Bing-hai, XU Jia-hui. SVM-based real-time scheduling approach of multi-load carries [J]. 吉林大学学报(工学版), 2016, 46(6): 2027-2033.
[9] LU Ying, WANG Hui-qin, QIN Li-ke. Accurate fire location method in high and large-span space buildings [J]. 吉林大学学报(工学版), 2016, 46(6): 2067-2073.
[10] MA Zhi-xing, ZHAO Qi, ZHANG Hao. Fourier analysis model for housekeeping gene [J]. 吉林大学学报(工学版), 2016, 46(5): 1639-1643.
[11] WANG Pin, HE Xuan, LYU Yang, LI Yong-ming, QIU Ming-guo, LIU Shu-jun. Automatic segmentation of articular cartilages using multi-feature SVM and elastic region growing [J]. 吉林大学学报(工学版), 2016, 46(5): 1688-1696.
[12] ZHANG Jing, LIU Xiang-dong. Prediction of concrete strength based on least square support vector machine optimized by chaotic particle swarm optimization [J]. 吉林大学学报(工学版), 2016, 46(4): 1097-1102.
[13] SHEN Xuan-jing, ZHAI Yu-jie, LU Yu-tong, WANG Yu, CHEN Hai-peng. Speaker recognition algorithm based on channel compensation [J]. 吉林大学学报(工学版), 2016, 46(3): 870-875.
[14] DAI Kun, YU Hong-yi, QIU Wen-bo,LI Qing. Unsupervised feature selection algorithm based on support vector machine for network data [J]. 吉林大学学报(工学版), 2015, 45(2): 576-582.
[15] XU Miao,ZHAO Ding-xuan,NI Tao,XU Chun-bo. Load prediction of hybrid excavator based on least square support vector machine [J]. 吉林大学学报(工学版), 2015, 45(1): 133-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Yong, SHI Yong-quan, FU Rui, GUO Ying-shi. Impact of driver's distracted driving time on vehicle lane departure[J]. 吉林大学学报(工学版), 2015, 45(4): 1095 -1101 .
[2] LIU Fu, LAN Xu-teng, HOU Tao, KANG Bing, LIU Yun, LIN Cai-xia. Metagenomic clustering method based on k-mer frequency optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(5): 1593 -1599 .
[3] Lei CHEN,Jiang⁃feng WANG,Yuan⁃li GU,Xue⁃dong YAN. Multi⁃source traffic data fusion algorithm based onmind evolutionary algorithm optimization[J]. Journal of Jilin University(Engineering and Technology Edition), 2019, 49(3): 705 -713 .
[4] ZONG Fang, LU Feng-rui, TANG Ming, LYU Jian-yu, WU Ting. Impact of habit and traffic condition on travel route selection[J]. 吉林大学学报(工学版), 2018, 48(4): 1023 -1028 .
[5] GUO Hao-tian,XU Tao,LIANG Xiao,YU Zheng-lei,LIU Huan,MA Long. Optimization on thermal surface with rib turbulator inspired by turbulence of alopias' gill in simplified gas turbine transition piece[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1793 -1798 .
[6] ZONG Fang, WANG Zhan-zhong, JIA Hong-fei, JIAO Yu-ling, WU Yang. Prediction of commuter's daily activity-travel duration time with support vector regression[J]. 吉林大学学报(工学版), 2016, 46(2): 406 -411 .
[7] LIU Xiang-yong, LI Wan-li. Electro-hydraulic proportional control model of accumulator[J]. 吉林大学学报(工学版), 2018, 48(4): 1072 -1084 .
[8] WANG Dian-hai, YE Ying, ZHU Wen-tao, QI Hong-sheng. Estimation of crowding costs in bus based on contingent valuation method[J]. 吉林大学学报(工学版), 2016, 46(1): 57 -62 .
[9] REN Qing-lei, WEI Xin, XIE Xiao-zhu, HU Wei. Micro contact mechanism based on force in self rotation grinding of silicon wafer[J]. 吉林大学学报(工学版), 2018, 48(3): 796 -802 .
[10] JIANG Yan, GAO Qing, LI Ming, WANG Li-hua. Effect of groundwater seepage on energy dynamic storage control of underground heat exchanger[J]. , 2012, 42(05): 1179 -1184 .