吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1688-1696.doi: 10.13229/j.cnki.jdxbgxb201605045

Previous Articles     Next Articles

Automatic segmentation of articular cartilages using multi-feature SVM and elastic region growing

WANG Pin1, HE Xuan1, LYU Yang1, LI Yong-ming1,2, QIU Ming-guo2, LIU Shu-jun1   

  1. 1.College of Communication Engineering,Chongqing University, Chongqing 400044,China;
    2.College of Biomedical Engineering, The Third Military Medical University, Chongqing 400038,China
  • Received:2015-04-21 Online:2016-09-20 Published:2016-09-20

Abstract: We present an algorithm that automatically and accurately segments the cartilages from Magnetic Resonance Images (MRI) of knees using multi-feature Support Vector Machine (SVM) and elastic region growing. First, adaptive canny edge detection is used to extract the main edges of the images. Second, the edge features are extracted and the edges are classified with SVM to complete the location of the cartilage edges. Then, based on the cartilage edges, the seeds and regions of the cartilage are chosen, and the preliminary segmentation of knee cartilages is achieved using the elastic region growing. Finally, the priori knowledge and morphology are used to improve the preliminary segmentation results. Experimental results show that the proposed method can accurately and rapidly segment the knee cartilages with high consistency with manual segmentation results. The proposed method obtains average DSC values of 0.8543, 0.8280 and 0.8703 for the femoral, tibial and patellar cartilages.

Key words: information processing technology, multi-feature support vector machine, elastic region growing, automatic segmentation of knee cartilages

CLC Number: 

  • TN911.73
[1] Hani A F M, Kumar D, Malik A S, et al. Multinuclear MR and multilevel data processing: an insight into morphologic assessment of in vivo nnee articular cartilage[J]. Academic Radiology, 2015, 22(1): 93-104.
[2] Peterfy C G, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis[J]. Osteoarthritis & Cartilage, 2004, 12(3): 177-190.
[3] Hani A F M, Kumar D, Malik A S, et al. Non-invasive and in vivo assessment of osteoarthritic articular cartilage: a review on MRI investigations[J]. Rheumatology International, 2015, 35(1):1-16.
[4] Hani A F M. Fusion of multinuclear magnetic resonance images of knee for the assessment of articular cartilage[C]∥International Conference of the IEEE Engineering in Medicine and Biology Society,Osaka, 2013:6466-6469.
[5] Jaremko J L, Cheng R W, Lambert R G, et al. Reliability of an efficient MRI-based method for estimation of knee cartilage volume using surface registration[J]. Osteoarthritis & Cartilage, 2006, 14(9): 914-922.
[6] König L, Groher M, Keil A, et al. Semi-automatic segmentation of the patellar cartilage in MRI[J].Informatik Aktuell, 2007,25(27):404-408.
[7] Swanson M S, Prescott J W, Best T M, et al. Semi-automated segmentation to assess the lateral meniscus in normal and osteoarthritic knees[J]. Osteoarthritis & Cartilage, 2010, 18(3): 344-353.
[8] Shim H, Chang S, Tao C, et al. Knee cartilage: efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method[J]. Radiology, 2009, 251(2): 548-556.
[9] Lee J G, Gumus S, Moon C H, et al. Fully automated segmentation of cartilage from the MR images of knee using a multi-atlas and local structural analysis method[J]. Medical Physics, 2014, 41(9): 092303.
[10] González G, Escalante-Ramírez B. Knee cartilage segmentation using active shape models and local binary patterns[J]. Optics Photonics & Digital Technologies for Multimedia Applications III, 2014, 9138: 91380K.
[11] Parsoon A, Petersen K, Lgel C, et al. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network[J]. Medical Image Computing and Computer Assisted Intervention (MICCAI), 2013, 8150: 246-253.
[12] Parsoon A, Petersen K, Lgel C, et al. Femoral cartilage segmentation in knee MRI scans using two stage voxel classification[C]∥Conf Proc IEEE Eng Med Biol Soc, Osaka, 2013: 5469-5472.
[13] 庞剑飞, 邱明国, 陈伟,等. 基于边缘检测与支持向量机的关节软骨自动分割算法研究[J]. 第三军医大学学报, 2013, 35(16): 1653-1657.
Pang Jian-fei, Qiu Ming-guo, Chen Wei, et al. Segmenting articular cartilage automatically by edge detection and support vector machine[J]. J Third Mil Med Univ, 2013, 35(16): 1653-1657.
[14] Pang J, Li P Y, Qiu M, et al. Automatic articular cartilage segmentation based on pattern recognition from knee MRI images[J]. Journal of Digital Imaging, 2015,28(6):695-703.
[15] Liu H, Jezek K C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods[J]. International Journal of Remote Sensing, 2010, 25(5): 937-958.
[16] Gonzalez R C,Woods R E. Digital Image Processing[M]. 3rd ed. US: Prentice Hall, 2009: 784-788.
[17] Theodoridis S, Koutroumbas K. Pattern Recognition[M]. 4th ed. Greece: Elsevier, 2009: 134-137.
[18] Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
[19] Hojjatoleslami S A, Kittler J. Region growing:a new approach[J]. IEEE Transactions on Image Processing, 1998, 7(7): 1079-1084.
[1] YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924.
[2] LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937.
[3] SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944.
[4] YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290.
[5] QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297.
[6] CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951.
[7] CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956.
[8] MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506.
[9] LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632.
[10] WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639.
[11] YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318.
[12] WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329.
[13] LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335.
[14] TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948.
[15] LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Song-shan, WANG Qing-nian, WANG Wei-hua, LIN Xin. Influence of inertial mass on damping and amplitude-frequency characteristic of regenerative suspension[J]. 吉林大学学报(工学版), 2013, 43(03): 557 -563 .
[2] CHU Liang, WANG Yan-bo, QI Fu-wei, ZHANG Yong-sheng. Control method of inlet valves for brake pressure fine regulation[J]. 吉林大学学报(工学版), 2013, 43(03): 564 -570 .
[3] LI Jing, WANG Zi-han, YU Chun-xian, HAN Zuo-yue, SUN Bo-hua. Design of control system to follow vehicle state with HIL test beach[J]. 吉林大学学报(工学版), 2013, 43(03): 577 -583 .
[4] HU Xing-jun, LI Teng-fei, WANG Jing-yu, YANG Bo, GUO Peng, LIAO Lei. Numerical simulation of the influence of rear-end panels on the wake flow field of a heavy-duty truck[J]. 吉林大学学报(工学版), 2013, 43(03): 595 -601 .
[5] WANG Tong-jian, CHEN Jin-shi, ZHAO Feng, ZHAO Qing-bo, LIU Xin-hui, YUAN Hua-shan. Mechanical-hydraulic co-simulation and experiment of full hydraulic steering systems[J]. 吉林大学学报(工学版), 2013, 43(03): 607 -612 .
[6] ZHANG Chun-qin, JIANG Gui-yan, WU Zheng-yan. Factors influencing motor vehicle travel departure time choice behavior[J]. 吉林大学学报(工学版), 2013, 43(03): 626 -632 .
[7] MA Wan-jing, XIE Han-zhou. Integrated control of main-signal and pre-signal on approach of intersection with double stop line[J]. 吉林大学学报(工学版), 2013, 43(03): 633 -639 .
[8] YU De-xin, TONG Qian, YANG Zhao-sheng, GAO Peng. Forecast model of emergency traffic evacuation time under major disaster[J]. 吉林大学学报(工学版), 2013, 43(03): 654 -658 .
[9] XIAO Yun, LEI Jun-qing, ZHANG Kun, LI Zhong-san. Fatigue stiffness degradation of prestressed concrete beam under multilevel amplitude cycle loading[J]. 吉林大学学报(工学版), 2013, 43(03): 665 -670 .
[10] XIAO Rui, DENG Zong-cai, LAN Ming-zhang, SHEN Chen-liang. Experiment research on proportions of reactive powder concrete without silica fume[J]. 吉林大学学报(工学版), 2013, 43(03): 671 -676 .