吉林大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (5): 1688-1696.doi: 10.13229/j.cnki.jdxbgxb201605045
Previous Articles Next Articles
WANG Pin1, HE Xuan1, LYU Yang1, LI Yong-ming1,2, QIU Ming-guo2, LIU Shu-jun1
CLC Number:
[1] Hani A F M, Kumar D, Malik A S, et al. Multinuclear MR and multilevel data processing: an insight into morphologic assessment of in vivo nnee articular cartilage[J]. Academic Radiology, 2015, 22(1): 93-104. [2] Peterfy C G, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis[J]. Osteoarthritis & Cartilage, 2004, 12(3): 177-190. [3] Hani A F M, Kumar D, Malik A S, et al. Non-invasive and in vivo assessment of osteoarthritic articular cartilage: a review on MRI investigations[J]. Rheumatology International, 2015, 35(1):1-16. [4] Hani A F M. Fusion of multinuclear magnetic resonance images of knee for the assessment of articular cartilage[C]∥International Conference of the IEEE Engineering in Medicine and Biology Society,Osaka, 2013:6466-6469. [5] Jaremko J L, Cheng R W, Lambert R G, et al. Reliability of an efficient MRI-based method for estimation of knee cartilage volume using surface registration[J]. Osteoarthritis & Cartilage, 2006, 14(9): 914-922. [6] König L, Groher M, Keil A, et al. Semi-automatic segmentation of the patellar cartilage in MRI[J].Informatik Aktuell, 2007,25(27):404-408. [7] Swanson M S, Prescott J W, Best T M, et al. Semi-automated segmentation to assess the lateral meniscus in normal and osteoarthritic knees[J]. Osteoarthritis & Cartilage, 2010, 18(3): 344-353. [8] Shim H, Chang S, Tao C, et al. Knee cartilage: efficient and reproducible segmentation on high-spatial-resolution MR images with the semiautomated graph-cut algorithm method[J]. Radiology, 2009, 251(2): 548-556. [9] Lee J G, Gumus S, Moon C H, et al. Fully automated segmentation of cartilage from the MR images of knee using a multi-atlas and local structural analysis method[J]. Medical Physics, 2014, 41(9): 092303. [10] González G, Escalante-Ramírez B. Knee cartilage segmentation using active shape models and local binary patterns[J]. Optics Photonics & Digital Technologies for Multimedia Applications III, 2014, 9138: 91380K. [11] Parsoon A, Petersen K, Lgel C, et al. Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network[J]. Medical Image Computing and Computer Assisted Intervention (MICCAI), 2013, 8150: 246-253. [12] Parsoon A, Petersen K, Lgel C, et al. Femoral cartilage segmentation in knee MRI scans using two stage voxel classification[C]∥Conf Proc IEEE Eng Med Biol Soc, Osaka, 2013: 5469-5472. [13] 庞剑飞, 邱明国, 陈伟,等. 基于边缘检测与支持向量机的关节软骨自动分割算法研究[J]. 第三军医大学学报, 2013, 35(16): 1653-1657. Pang Jian-fei, Qiu Ming-guo, Chen Wei, et al. Segmenting articular cartilage automatically by edge detection and support vector machine[J]. J Third Mil Med Univ, 2013, 35(16): 1653-1657. [14] Pang J, Li P Y, Qiu M, et al. Automatic articular cartilage segmentation based on pattern recognition from knee MRI images[J]. Journal of Digital Imaging, 2015,28(6):695-703. [15] Liu H, Jezek K C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods[J]. International Journal of Remote Sensing, 2010, 25(5): 937-958. [16] Gonzalez R C,Woods R E. Digital Image Processing[M]. 3rd ed. US: Prentice Hall, 2009: 784-788. [17] Theodoridis S, Koutroumbas K. Pattern Recognition[M]. 4th ed. Greece: Elsevier, 2009: 134-137. [18] Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines[J]. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425. [19] Hojjatoleslami S A, Kittler J. Region growing:a new approach[J]. IEEE Transactions on Image Processing, 1998, 7(7): 1079-1084. |
[1] | YING Huan,LIU Song-hua,TANG Bo-wen,HAN Li-fang,ZHOU Liang. Efficient deterministic replay technique based on adaptive release strategy [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1917-1924. |
[2] | LIU Zhong-min,WANG Yang,LI Zhan-ming,HU Wen-jin. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1931-1937. |
[3] | SHAN Ze-biao,LIU Xiao-song,SHI Hong-wei,WANG Chun-yang,SHI Yao-wu. DOA tracking algorithm using dynamic compressed sensing [J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48(6): 1938-1944. |
[4] | YAO Hai-yang, WANG Hai-yan, ZHANG Zhi-chen, SHEN Xiao-hong. Reverse-joint signal detection model with double Duffing oscillator [J]. 吉林大学学报(工学版), 2018, 48(4): 1282-1290. |
[5] | QUAN Wei, HAO Xiao-ming, SUN Ya-dong, BAI Bao-hua, WANG Yu-ting. Development of individual objective lens for head-mounted projective display based on optical system of actual human eye [J]. 吉林大学学报(工学版), 2018, 48(4): 1291-1297. |
[6] | CHEN Mian-shu, SU Yue, SANG Ai-jun, LI Pei-peng. Image classification methods based on space vector model [J]. 吉林大学学报(工学版), 2018, 48(3): 943-951. |
[7] | CHEN Tao, CUI Yue-han, GUO Li-min. Improved algorithm of multiple signal classification for single snapshot [J]. 吉林大学学报(工学版), 2018, 48(3): 952-956. |
[8] | MENG Guang-wei, LI Rong-jia, WANG Xin, ZHOU Li-ming, GU Shuai. Analysis of intensity factors of interface crack in piezoelectric bimaterials [J]. 吉林大学学报(工学版), 2018, 48(2): 500-506. |
[9] | LIN Jin-hua, WANG Yan-jie, SUN Hong-hai. Improved feature-adaptive subdivision for Catmull-Clark surface model [J]. 吉林大学学报(工学版), 2018, 48(2): 625-632. |
[10] | WANG Ke, LIU Fu, KANG Bing, HUO Tong-tong, ZHOU Qiu-zhan. Bionic hypocenter localization method inspired by sand scorpion in locating preys [J]. 吉林大学学报(工学版), 2018, 48(2): 633-639. |
[11] | YU Hua-nan, DU Yao, GUO Shu-xu. High-precision synchronous phasor measurement based on compressed sensing [J]. 吉林大学学报(工学版), 2018, 48(1): 312-318. |
[12] | WANG Fang-shi, WANG Jian, LI Bing, WANG Bo. Deep attribute learning based traffic sign detection [J]. 吉林大学学报(工学版), 2018, 48(1): 319-329. |
[13] | LIU Dong-liang, WANG Qiu-shuang. Instantaneous velocity extraction method on NGSLM data [J]. 吉林大学学报(工学版), 2018, 48(1): 330-335. |
[14] | TANG Kun, SHI Rong-hua. Detection of wireless sensor network failure area based on butterfly effect signal [J]. 吉林大学学报(工学版), 2017, 47(6): 1939-1948. |
[15] | LI Juan, MENG Ke-xin, LI Yue, LIU Hui-li. Seismic signal noise suppression based on similarity matched Wiener filtering [J]. 吉林大学学报(工学版), 2017, 47(6): 1964-1968. |
|