Journal of Jilin University(Engineering and Technology Edition) ›› 2019, Vol. 49 ›› Issue (5): 1575-1583.doi: 10.13229/j.cnki.jdxbgxb20180404

Previous Articles    

Martensitic transformation of surface white layer in high speed hard cutting

Chun-zheng DUAN(),Fang-yuan ZHANG,Wen-neng KOU,Bin WEI   

  1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
  • Received:2018-04-26 Online:2019-09-01 Published:2019-09-11

Abstract:

The martensitic transformation of surface white layer in high speed hard cutting is studied in this paper. First, a martensite critical phase transformation temperature model was developed based on the phase transformation mechanism of white layer. Then the theoretical martensite fraction of the white layer was calculated combined with the M S model. The calculated martensite fraction was compared with the martensite fraction measured by experiments. The results show that the value of the calculated martensite fraction is higher than that of the experimental value. The formation of martensite of the white layer is influenced by cutting heat and plastic deformation. The influences of cutting speed and flank wear on the martensite fraction are analyzed combined with the transmission electron microscope experiments.

Key words: mechanical manufacturing and automation, white layer, critical martensite phase transformation temperature, martensite fraction, cutting heat, plastic deformation

CLC Number: 

  • TG142.1

Fig.1

Yield strength under different temperature"

Table 1

GCr15 parent phase chemical composition"

元素 质量分数/% 摩尔分数
Fe 97.5 0.94
C 1 0.045
Cr 1.5 0.015

Fig.2

EPMA chemical element of hardened GCr15 steel"

Fig.3

TEM dark field image of white layer"

Fig.4

Curve of phase free energychanged with temperature"

Table 2

Parameters data used in fitting"

温度/ K 屈服强度/ MPa Δ G α ? M /(J·mol-1
293 1352 3739
573 880 2748
773 600 2160
1073 474 1895

Fig.5

Fitting curve of Δ G α ? M changed with temperature"

Fig.6

Curve of - Δ G γ ? α changed with temperature"

Fig.7

Illustration of critical phase transition temperature"

Fig.8

Comparison of martensite fraction about theoretical value and experimental value"

1 Barbacki A , Kawalec M , Hamrol A . Turning and grinding as a source of microstructural changes in the surface layer of hardened steel[J]. Journal of Materials Processing Technology, 2003, 133(1): 21-25.
2 刘战强, 吕绍瑜 . 镍基粉末高温合金切削加工表面白层形成热-力耦合作用机理[J]. 机械工程学报, 2014, 50(17): 186-193.
Liu Zhan-qiang , Shao-yu Lyu . Thermo-mechanical coupling mechanisms for white layer formation on machined surface of powder metallurgical nickel-based superalloy[J]. Journal of Mechanical Engineering, 2014, 50(17): 186-193.
3 Chou Y K , Evans C J . White layers and thermal modeling of hard turned surfaces[J]. International Journal of Machine Tools & Manufacture, 1999, 39(12): 1863-1881.
4 陈涛, 刘献礼, 李素燕, 等 . 高速硬切削加工表面白层形成机理研究[J]. 机械工程学报, 2015, 51(23): 182-188.
Chen Tao , Liu Xian-li , Li Su-yan , et al . Mechanism of white layer formation on machined surface of high-speed hard machining[J]. Journal of Mechanical Engineering, 2015, 51(23): 182-188.
5 Hosseini S B , Klement U , Yao Y , et al . Formation mechanisms of white layers induced by hard turning of AISI 52100 steel[J]. Acta Materialia, 2015, 89: 258-267.
6 段春争, 张方圆, 孔维森 . 干硬切削表面白层厚度的建模与预测[J]. 机械工程学报, 2015, 51(17): 194-202.
Duan Chun-zheng , Zhang Fang-yuan , Kong Wei-sen . Modeling and prediction of white layer thickness in dry and hard machining of hardened steel[J]. Journal of Mechanical Engineering, 2015, 51(17): 194-202.
7 Umbrello D , Outeiro J C , Saoubi R M , et al . A numerical model incorporating the microstructure alteration for predicting residual stresses in hard machining of AISI 52100 steel[J]. CIRP Annals-Manufacturing Technology, 2010, 59(1): 113-116.
8 Ghosh G , Olson G B . Computational thermodynamics and the kinetics of martensitic transformation[J]. Journal of Phase Equilibria, 2001, 22(3): 199-207.
9 Stormvinter A , Borgenstam A , Ågren J . Thermodynamically based prediction of the martensite start temperature for commercial steels[J]. Metallurgical & Materials Transactions A, 2012, 43(10): 3870-3879.
10 Dieter G E . Mechanical Metallurgy[M]. New York: MacGraw-Hill. Inc., 1986.
11 孔维森 . 高速切削淬硬钢已加工表面白层和残余应力的预测与实验研究[D]. 大连: 大连理工大学机械工程学院, 2013.
Kong Wei-sen . Prediction and experimental research of white layer and residual stress in high speed machining of hardened steel[D]. Dalian: School of Mechanical Engineering, Dalian University of Technology, 2013.
12 Barry J , Byme G . TEM study on the surface white layer in two turned hardened steels[J]. Materials Science & Engineering A, 2002, 325(1/2): 356-364.
13 Sauvage X , Breton J M L , Guiliet A , et al . Phase transformations in surface layers of machined steels investigated by X-ray diffraction and Mössbauer spectrometry[J]. Materials Science & Engineering A, 2003, 362: 181-186.
14 康煜平 . 金属固态相变及应用[M]. 北京: 化学工业出版社, 2007.
15 徐祖耀 . 马氏体相变与马氏体[M]. 2版. 北京: 科学出版社, 1999.
16 Hsu T Y . An approximate approach for the calculation of Ms in iron-base alloys[J]. Journal of Materials Science, 1985, 20(1): 23-31.
17 John Ågren . A thermodynamic analysis of the Fe-C and Fe-N phase diagrams[J]. Metallurgical Transactions A, 1979, 10(12): 1847-1852.
18 Bhadeshia H K D H . Driving force for martensitic transformation in steels[J]. Metal Science, 1981, 15(4): 175-177.
19 Chipman J . Thermodynamics of the transformation in Fe-Cr alloys[J]. Metallurgical and Materials Transactions B, 1974, 5(2): 521-523.
20 Breedis J F , Kaufman L . The formation of Hcp and Bcc phases in austenitic iron alloys[J]. Metallurgical Transactions, 1971, 2(9): 2359-2371.
21 Ansell G S , Donachie S J , Mmessler R W . The effect of quench rate on the martensitic transformation in Fe-C alloys[J]. Metallurgical Transactions, 1971, 2(9): 2443-2449.
22 Hosseini S B , Beno T , Klement U , et al . Cutting temperatures during hard turning-measurements and effects on white layer formation in AISI 52100[J]. Journal of Materials Processing Technology, 2014, 214(6): 1293-1300.
23 Koistinen D P , Marbuger R E . A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59-60.
24 van Bohemen S M C , Sietsma J . Effect of composition on kinetics of athermal martensite formation in plain carbon steels[J]. Materials Science and Technology, 2009, 25(8): 1009-1012.
25 Zhang F Y , Duan C Z , Xu X X . Influence of cutting condition on white layer induced by high speed machining of hardened steel[J]. International Journal of Advanced Manufacturing Technology, 2017, 98(1): 1-8.
26 朱丽娟, 谷诤巍, 吕义, 等 . 超高强钢热冲压硬化机理[J]. 吉林大学学报: 工学版, 2013, 43(2): 376-379.
Zhu Li-juan , Gu Zheng-wei , Lyu Yi, et al . Mechanism of hot stamping hardening for ultra-high strength steel[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(2): 376-379.
27 徐虹, 刘亚楠, 于婷, 等 . 双相钢DP780在循环加载-卸载过程中的非弹性回复行为及其微观机理[J]. 吉林大学学报: 工学版, 2017, 47(1): 191-198.
Xu Hong , Liu Ya-nan , Yu Ting , et al . Inelastic recovery behavior and microscopic mechanism of high strength DP780 steel during cyclic loading-unloading[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(1): 191-198.
28 韩宝军 . 奥氏体动态再结晶晶粒超细化及其马氏体相变研究[D]. 上海: 上海交通大学材料科学与工程学院, 2008.
Han Bao-jun . Research on the grain ultra-refinement in austenite by dynamic recrystallization and its martensitic transformation[D]. Shanghai: School of Materials Science and Engineering, Shanghai Jiaotong University, 2008.
29 Mironov S , Salishchev G , Myshlyaey M M , et al . Evolution of misorientation distribution during warm 'abc' forging of commercial-purity titanium[J]. Materials Science & Engineering A, 2006, 418(1/2): 257-267.
30 Saito Y , Utsunomiya H , Tsuji N , et al . Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process[J]. Acta Materialia, 1999, 47(2): 579-583.
31 王蕾 . 热轧带钢的相变和力学性能模型研究及应用[D]. 北京: 北京科技大学材料科学与工程学院, 2017.
Wang Lei . Research and application of phase transformation and mechanical properties models in hot strip rolling[D]. Beijing: School of Materials Science and Engineering, University of Science and Technology Beijing, 2017.
32 付秀丽 . 高速切削航空铝合金变形理论及加工表面形成特征研究[D]. 济南: 山东大学机械工程学院, 2007.
Fu Xiu-li . Research on deformation theory and characteristics of machined surface for high-speed milling aviation aluminum alloy[D]. Jinan: School of Mechanical Engineering, Shandong University, 2007.
[1] REN Shu-nan, YANG Xiang-dong, WANG Guo-lei, LIU Zhi, CHEN Ken. Base position planning of mobile manipulator for large parts painting [J]. 吉林大学学报(工学版), 2016, 46(6): 1995-2002.
[2] GUO Li-bin, ZHANG Bin, CUI Hai, ZHANG Zhi-hang. Structural parameters of 3D roughness for micro wire electrical discharge machining surface [J]. 吉林大学学报(工学版), 2015, 45(3): 851-856.
[3] ZHANG Lei, ZHAO Yun-wei, YANG Zhuo, ZHAO Ji. Shear yield property of electrorheological polishing fluid [J]. , 2012, 42(05): 1145-1150.
[4] ZHANG Lei,HE Xin-sheng,ZHANG Ying,YANG He-ran. Development of new type ER fluid-assisted polishing  tool and its polishing experiment [J]. 吉林大学学报(工学版), 2010, 40(04): 1009-1014.
[5] Meng Fan-zhong,Zhang Jin-ping,Xu Shu-xin . Engine assembly test and wear characteristics of automotive chain [J]. 吉林大学学报(工学版), 2008, 38(增刊): 99-0102.
[6] YANG Xiao-dong, REN Lu-quan. Analysis of Deformation Mechanism of the Creature Flexibility, Elastic and Plastic Models [J]. 吉林大学学报(工学版), 2002, (4): 78-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!